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Protein adsorption at solid–liquid interfaces is critical to many applications, including biomaterials,

protein microarrays and lab-on-a-chip devices. Despite this general interest, and a large amount of

research in the last half a century, protein adsorption cannot be predicted with an engineering level,

design-orientated accuracy. Here we describe a Biomolecular Adsorption Database (BAD), freely

available online, which archives the published protein adsorption data. Piecewise linear regression with

breakpoint applied to the data in the BAD suggests that the input variables to protein adsorption, i.e.,

protein concentration in solution; protein descriptors derived from primary structure (number of

residues, global protein hydrophobicity and range of amino acid hydrophobicity, isoelectric point);

surface descriptors (contact angle); and fluid environment descriptors (pH, ionic strength), correlate

well with the output variable—the protein concentration on the surface. Furthermore, neural network

analysis revealed that the size of the BAD makes it sufficiently representative, with a neural network-

based predictive error of 5% or less. Interestingly, a consistently better fit is obtained if the BAD is

divided in two separate sub-sets representing protein adsorption on hydrophilic and hydrophobic

surfaces, respectively. Based on these findings, selected entries from the BAD have been used to

construct neural network-based estimation routines, which predict the amount of adsorbed protein, the

thickness of the adsorbed layer and the surface tension of the protein-covered surface. While the BAD

is of general interest, the prediction of the thickness and the surface tension of the protein-covered

layers are of particular relevance to the design of microfluidics devices.
1 Introduction

Protein adsorption at solid–liquid interfaces is critical to a large

number of industrial and biomedical applications. In the

biomedical arena alone the adsorption of proteins on surfaces is

relevant to areas as diverse as biomaterials, protein microarrays

and lab-on-a-chip devices. This large span of interest is paralleled

by the diverse intent of the quantification of protein adsorption

on surfaces. For instance, for implantable biomaterials the

protein adsorption has to be minimised to avoid bio-incompat-

ibility. For protein microarrays, one needs to find the optimum

balance between higher protein concentration on surfaces, which

leads to an increase in overall sensitivity; and protein denatur-

ation, which leads to sensitivity decrease. Finally, for lab-on-

a-chip devices protein adsorption may be deleterious to the

transport of biofluids in micro-channels and could complicate
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device design and operation, but the immobilisation of proteins

in micro-chambers is essential for analytical functions.

The efforts aiming to understand and predict protein adsorp-

tion are usually based on the modelling and simulation that uses

a combination, in various degrees, of either a discrete, molecu-

larly-orientated approach, or a continuous, thermodynamically-

orientated approach. At one extreme, the discrete approach is

based on the description of the protein as a set of interconnected

objects (atoms, or groups of atoms), but the sheer complexity

generated by this approach precluded the development of any

model with a significant level of generality. Firstly, treating the

problem by computational chemistry, e.g., by molecular

dynamics simulations,1–3 is at present not feasible due to the large

numbers of atoms involved and consequently the prohibitive

computing resources required. Consequently, most models4–7

approximate the protein by a collection of rigid objects, with

simple shapes and uniform charge. This simplification, although

able to deliver accurate predictions in a number of cases,7 is not

helpful when attempting predictions for proteins with more

complex shapes. The difficulty of describing accurately and

efficiently the protein object is compounded by the failure to

account for the large number of interactions and fluid-flow

effects which affect the adsorption process.8,9 Fundamentally,

and computational problems aside, the discrete, molecularly-

based models have an inherent difficulty in taking into account

even the simplest adsorption parameters, e.g., concentration of

the protein in solution.
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The progress of the alternative approach, which describes

protein adsorption in thermodynamic terms, has been more

substantial, largely because the relevant theoretical framework

had been already developed for other adsorption processes and

because this approach had a higher empirical content than

molecularly-based approaches. This thermodynamic-orientated

approach can be connected more easily than molecularly-based

models to experimental efforts, which can be used for the esti-

mation of model parameters. Indeed, a wealth of publications

developed models for a finer description of the protein adsorp-

tion, e.g., its kinetics,7,10–12 and the correlation between adsorbed

amount and protein concentration in solution in the form of

adsorption isotherms13,14 with parameters estimated from, or

with results compared with experimental data. Despite its

versatility, and in contrast with molecularly-based models, the

thermodynamic models have an inherent difficulty in describing

the impact of process conditions on protein adsorption, in

particular their impact on adsorbed protein bioactivity. Indeed,

as small changes in the pH, temperature or ionic strength of the

solution can induce considerable changes in protein conforma-

tion, the adsorbed amount of protein and its bioactivity can

change dramatically.

Despite this general and acute interest in protein adsorption

and much work done towards its modelling and simulation, the

complexity of the process translates into the incapacity of pre-

dicting it with a reasonable degree of accuracy,15 even if precise

information regarding the protein structure, fluid environment

and surface parameters is available. A similar problem of

untamed complexity faced by other scientific areas, e.g., drug

discovery,16,17 material discovery,18,19 is tackled by combinatorial

approaches, which comprehensively map the relevant experi-

mental ‘space’ and then seek to correlate input parameters (e.g.,

structure, composition) with output parameters (e.g., bioactivity,

material properties).
Fig. 1 Screenshot of the portal to the B
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To this end, we describe a Biomolecular Adsorption Database

(BAD), freely available online, which aggregates published data

regarding protein adsorption. The database can be used for the

selection of materials or operation conditions for microfluidics

devices.
2 Methods

2.1. The BAD concept and data collection

The Biomolecular Adsorption Database (BAD) was conceived as

a web-orientated database comprising the experimental data

reported in the literature. While the purpose of the database is to

be a depositary of information regarding the adsorption of

biomolecules in general, at the moment only data regarding the

protein adsorption is present, due to its relative importance and

to the complex behaviour of proteins at surfaces.

The database has been intended to be used primarily for the

design of microfluidics devices, in particular for the selection of

materials for device fabrication, and for the selection of the

optimum operating conditions of lab-on-a-chip devices. Conse-

quently, the BAD comprises only literature data that compre-

hensively report quantitatively the protein, surface and fluid

environment descriptors. Unfortunately, only a small proportion

of the literature reports on the full extent of protein adsorption

data, but the large amount of the general literature counter-

balanced this drawback.

An essential feature of the BAD project was the open and free

access to the database, as well as the possibility of continuous

upgrade, either by database maintenance and inclusion of newly

published data, or entries submitted by individual researchers,

similarly to e.g., Protein Data Base, PDB.20 The first tentative

on-line version of the BAD was mentioned before21 in the context

of the calibration of micro-channels for microfluidic devices.
iomolecular Adsorption Database.
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Recently, we have reorganised and supplemented this database

with additional entries and implemented it on a MS-Access

platform. Where necessary, the primary data have been refined,

and brief descriptions of the experimental techniques are

provided. This contribution reports on the present design and

capabilities of the BAD, which is freely available at http://

dbweb.liv.ac.uk/bad/. An image of the entry portal to the BAD is

presented in Fig. 1.

The BAD contains experimental results from adsorption

isotherms, plateaus and pseudo-plateaus of adsorption kinetics

experiments and single adsorption experiments (when adsorbents

are incubated in a protein solution with a known initial protein

concentration). The primary data has been collected from the

open literature (see ESI†) using the major literature search

engines (e.g., Scopus, Wiley, Science Direct, ISI Web of Science,

etc.) and using several combinations of relevant keywords, e.g.,

(protein adsorption)AND(contact angle). This initial search was

followed by the critical analysis and augmentation of the pub-

lished data.

Presently, the BAD comprises 768 records of protein adsorp-

tion experiments. In several instances, the pair of values (protein

concentration in solution) vs. (protein concentration on the

surface) had to be estimated from the original contributions

through graphical interpolation of data points in the original

figures. 80% of the data collected in the BAD come from

adsorption isotherms data, 16% from adsorption kinetics

experiments and 4% from single adsorption experiments.
2.2. Protein adsorption variables reported in the BAD

The database reports on several input parameters of the protein

adsorption process, i.e., related to the protein, surface and fluid

environment, together with additional information; the output

parameter—mass of adsorbed protein on the surface; and some

auxiliary information, i.e., method of measurement and relevant

reference.

Protein variables. Presently the BAD comprises data regarding

the adsorption of 25 representative proteins, namely: albumin

(HSA and BSA) 21%; fibrinogen 17.7%; lysozyme 14%; immu-

noglobulin G 10.4%; alpha-lactalbumin 9.8%; myoglobin 4%;

fibronectin 3.1%; ribonuclease 3%; cholesterol esterase 2.6%;

alpha-chymotrypsin 2.2%; insulin 2.1%; beta-casein 2.1%; cutinase

1.7 %; human growth hormone 0.8%; immunoglobulin M 0.8%;

alpha-2-macroglobulin 0.8%; alpha-s1-casein 0.8%; beta-lacto-

globulin 0.8%; protein C3 0.5%; alpha-1-acid glycoprotein 0.4%;

hemoglobin 0.4%; collagen 0.3%; gamma-globulin 0.3%; mucin

0.3%; protein A 0.3%. Structural files (entries in the Protein Data

Base, PDB) are provided for 15 proteins, which represent about

90% of total entries in the BAD. The proteins with molecular

structures available as PDB files are highlighted in italics. The

BAD also provides information regarding the protein primary

descriptors, i.e., the composition (number of residues and their

fraction in the protein composition), and secondary structure

motifs (alpha helices, beta sheets and S–S bonds). For a single

case, i.e., fibrinogen, two structures are provided (the structural

file of the whole molecule comprises three domains). Further-

more, using the protein sequence in FASTA format22 and

a Matlab script, the BAD also provides the secondary descriptors,
This journal is ª The Royal Society of Chemistry 2009
i.e., molecular weight, overall hydrophobicity, isoelectric point and

the estimated surface tension of the protein. The protein

descriptors are calculated from the individual parameters of the

amino acids, i.e., mass, pKa, hydrophobicity (White & Wimley

hydrophobicity scale23) and surface tension (estimated using

SciPolymer software from SciVision), weighted in accordance

to the respective amino acid mass contributions. We also calcu-

lated the standard deviation of the amino acid hydrophobicity

within the protein.

Surface variables. The BAD presently comprises 9 types of

surfaces on which protein adsorption has been measured, in the

following proportions: polymers 49%; oxides (including

unmodified silica) 22.8%; modified silica 11.6%; silicon wafer

5.2%; phospholipids 4.2%; glass 3.9%; self-assembled mono-

layers (SAMs) 2%; gold 1.2%; mica 0.3%. The central surface

descriptor is surface hydrophobicity. The surface hydrophobicity

can be quantified by either surface tension or the contact angle.

Despite the fundamental nature of surface tension, as opposed to

the practical but empirical nature of the contact angle, the latter

has been chosen as primary data in the BAD because of its

widespread use. The relationship between the empirically

measured contact angle and surface tension has been also

described (see also ESI† and section 3.4.). When the original

publication does not report the contact angle, its value is

assumed to be equal to that reported by the same author(s) in

a related paper; or assumed to be equal with an average of close

values reported elsewhere for the same surface, but only for

common types of surfaces such as glass, silica, etc. When both the

advancing and receding contact angles are reported, the BAD

reports their average.24 The BAD reports the surface chemistry

where available, e.g., specialised polymers, and assumes that

adsorbent surfaces are smooth.

Fluid media variables. Presently, there are 11 different buffer

solutions with distinct composition represented in the BAD, for

which adsorption experiments were performed. The buffer

descriptors recorded are pH, ionic strength and, where available,

temperature. If the protocol for the buffer is available, the pH

and the ionic strength are calculated using a web-based Buffer

calculator available at www.liv.ac.uk/buffers/.25 For experiments

citing ‘‘room temperature’’ the value was assumed to be 22 �C.

Phosphate buffers with no added NaCl are designated by PB,

and those with added NaCl as PBS.

Protein concentration on the surface. The data regarding

protein concentration on the adsorbing surface, Csurf, (mg/m2),

has been collected from three different types of experiments, i.e.,

(i) adsorption isotherms data, (ii) adsorption kinetics experi-

ments and (iii) single adsorption experiments. An explanatory

note is provided in the BAD for each experiment type. 12

different measurement methods have been used for the quanti-

fication of the amount of protein adsorbed on surfaces, with the

proportion for each technique as follows: UV adsorption

31.42%; radio-labelling 27.99%; ellipsometry 17.7%; Lowry

method 5.86%; quartz micro balance (QCM) 4.55%; scanning

angle reflectometry (SAR) 3.78%; total internal reflection fluo-

rescence (TIRF) 3.77%; sedimentation field-flow fractionation

(SdFFF) 2.47%; reflectometry 1.17%; bicinchoninic acid assay
Lab Chip, 2009, 9, 891–900 | 893



Table 1 Information provided by the BAD and its organisation

Main BAD table/web page
Protein name—link to Protein table

Surface Acronym—link to Surfaces table
Contact angle (�)

Surface tension (mJ/m2)
Buffer—link to Buffer table

Buffer pH
Ionic strength (M)

Surface protein concentration (mg/m2)
Solution protein concentration (mg/ml)

Experiment type
Measurement method—link to Methods table

Reference—id leading to Reference table
Notes—comments on specific entry

Protein table:
(BCA) 1.04%; surface plasmon resonance (SPR) 0.52%; optical

waveguide lightmode spectroscopy (OWLS) 0.39%. A brief

description for each of the techniques is provided as a note.

Protein concentration in solution. The protein concentration in

the fluid media, Csol, (mg/ml), has slightly different meanings for

each of the above types of experiments, i.e., (i) the equilibrium

concentration in solution after adsorption for adsorption

isotherms data, (ii) the bulk protein concentration for adsorption

kinetics experiments, and (iii) the initial protein concentration

(decreasing during adsorption) for single adsorption experi-

ments.

The BAD also provides links to additional information about

the proteins, buffers, surfaces, and methods of measurement.
Protein name
Source—information about protein source

PDB ID (linked Protein Data Bank Identifier)
Molecular weight (KDa)

Isoelectric point
Protein surface tension (mJ/m2)

Residues: number of residues of the protein
Residues in alpha helices: number of residues in the alpha helices

structures
Residues in beta sheets: number of residues in the beta sheets structures

Disulfide bonds: number of disulfide bonds of the protein
Composition of amino acids

% of EACH amino acid in the protein sequence
Protein hydrophobicity

More info: PDF file containing details about the selected protein
2.3. The organization of the BAD

The primary data was organized along several central tables (web

pages). Each table contains the unique index for each row

(unique or primary key). The tables are connected through the

use of foreign keys that are referential constraints between rela-

tions. This approach avoids the redundancy of data in the BAD,

maintains its coherence, and allows for the easy extraction of the

relevant information. The structure of the information presented

in the BAD is schematically presented in Table 1. Fully detailed

information regarding the database is presented in the ESI.†
Surfaces table:
Surface full name

Surface Acronym and surface abbreviation
Description

Reference: link to reference id and further information

Buffer table:
Buffer ID/acronym

Description, full buffer name
Composition: composition of buffer solution

Reference: link to reference id and further information

Methods table:
Measurement method name

Acronym
Description

Reference: link to reference id and further information
Link to external source related to the relevant methodology

Reference table:
ID—reference identification

Author/s
Title
Year

Source
Link to external source related to the relevant reference
2.4. Statistical analysis

The BAD has been tested through the application of regression

and neural networks analysis, for the statistical soundness of the

variables and overall database extent, respectively.

The piecewise multi-linear regression with breakpoint has been

applied to a subset of the BAD representing 420 data points (67%

of the overall BAD). This subset comprises data that is fully

characterised, i.e., complete protein-, surface- and fluid-descrip-

tors, and excludes substantial outliers, e.g., measurements with

the quartz microbalance, protein molecular weights above 150

kDa, extremely high protein concentration in solution. Further,

the regression has been applied separately to data representing

adsorption on hydrophilic (contact angle lower than 45 deg; 201

cases) and hydrophobic surfaces (199 cases).

The regression analysis used a least-squares penalty function

as implemented in the software package Statistica� (from Stat-

Soft Inc.). Whilst the Statistica package is capable of enabling the

algorithm to estimate the breakpoint automatically, manually

tuning the breakpoint provided a comparatively better fit. The

chosen breakpoint was the value at which the correlation

between the observed and predicted values was at its highest. We

used several estimation algorithms: quasi-Newton, Hooke–

Jeeves, Simplex, Rosenbrock and combination of Rosenbrock

pattern search and quasi-Newton. Of these, only the first and last

were successfully able to converge to a satisfactory solution and

both methods gave practically identical results. The maximum

number of iterations was set to 1000 and the convergence crite-

rion was set to 10 (the optimization stops when the changes in the

parameters from iteration to iteration are no more than the

convergence criterion).
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The above subset was then analysed by neural networks

procedures, also as implemented in Statistica. First, the 420

dataset described above was divided in three sets: training (50,

100, 150, 200, 250 and 300 data points), selection (or validation,

60 data points), and testing (60 data points). The size of the

training, selection and test sets has been automatically suggested

by Statistica. For each of these combinations we carried out 10

separate runs, each run fitting several types of neural networks

using the above sets. Each run uses sets of identical size, but with
This journal is ª The Royal Society of Chemistry 2009



different composition, prepared through a random process of

selection from the BAD 420-subset. For each run we recorded

the results, i.e., training, selection and test error as averages,

standard deviations and minimum values, only for the networks

that improved during neural network procedure. Each run

produced an average of 84 improved networks. Second, we run

the same calculation plan but with double the size of test sets (120

data points). Consequently the training set could be only up to

240 data points. Finally, we divided the 420 data set in two quasi-

equal data sets (211 and 209 data points), each related to

different surfaces, i.e., hydrophilic (up to 45�) and hydrophobic.

The same procedures were run as before on these two reduced

size data sets, but only up to 150 data points for the training set

(the remainder being used for the selection and test sets). These

surface-specific neural networks calculations produced an

average of 50 and 80 improved networks per training set, for

hydrophilic and hydrophobic surfaces, respectively. In all

calculations, the protein surface concentration was the contin-

uous output and the continuous inputs were protein concentra-

tion in solution, ionic strength, contact angle, absolute difference

between the pH of buffer and the isoelectric point of the protein,

protein hydrophobicity and its standard deviation. In all calcu-

lations, both the linear and logistic regression output encoding

have been used. The criterion used to select the retained networks

was the balance error against diversity. The types of the selected

neural networks are linear, probabilistic, general regression,

radial basis function and 3 and 4 layer perceptron.

2.5. Prediction of protein adsorption-relevant parameters

Analysis of different network types and architectures, which used

the maximum network performance and minimum error criteria,

has revealed that the multiple percepton neural network (MLP)

gives the optimal results. For the purpose of the further analysis

a 3-layer MLP was chosen for fitting the data for hydrophobic

surfaces and a 4-layer MLP for hydrophilic surfaces, respec-

tively, and trained using the back propagation method as

implemented in Statistica. The most improved network models

were further selected. For the hydrophobic surfaces the 7 : 10 : 1

architecture composed of 7 neurons in the first input layer, 10

neurons in the second hidden layer and 1 neuron in the third

output layer was selected with the mean-squared error of 0.031.

For the hydrophilic surfaces the 7 : 11 : 11 : 1 architecture was

fitted with the mean squared error of 0.025. In both cases the

hyperbolic function was used as an activation function in hidden

layers and the logistic function in output layers, respectively. The

performances of the selected neural networks were further

analyzed and implemented in Matlab, which was used as the

platform for the prediction routines available on the BAD portal.

3 Results and discussion

3.1. The BAD and the prediction of protein adsorption for lab-

on-a-chip design

Despite the interest in protein adsorption for nearly half

a century, one could not yet predict with engineering accuracy

the adsorbed amount of a particular protein, on a particular

surface in a particular fluid environment. Aside from the previ-

ously discussed complexity of the process, this inability also has
This journal is ª The Royal Society of Chemistry 2009
its roots in the evolution of the interest in protein adsorption. At

the beginning much of the interest in protein adsorption was

mainly theoretical, which resulted in important theoretical

advances—many in use even today. Later, the advent of

implantable materials, first metallic, then increasingly polymeric,

paralleled by the emergence of more precise analytical equip-

ment, shifted the focus from processes to materials and surfaces.

More recently, the development of biomedical microdevices, e.g.,

biosensors, bioMEMS, micro- and nanoarrays and lab-on-a-chip

devices, comes with new interests, challenges and opportunities.

While the BAD is intended to help the practitioners involved in

any of the above mentioned areas, i.e., colloid and surface

science, biomaterials and biomedical microdevices, we expect

that the latter community will benefit the most. Indeed, in

microfluidics systems the flow of the fluids is well within the

laminar regime, and this would make the design of lab-on-a-chip

devices trivial if not for a number of complications, of which two

could be critical:

(i) Change in device geometry. In small sized features (micro-

channels, corners, etc.) the attachment of the biomolecules on the

walls of the device could induce important changes of their

dimensions, at least relatively, thus changing the hydrodynamic

resistance to flow in the device.

(ii) Change in surface properties. In laminar regime essentially

all the hydrodynamic resistance is concentrated at the walls and

this resistance is used to estimate the power required to operate

the microfluidics device. But what are the walls? When biomol-

ecules, mostly proteins, attach parasitically and indiscriminately

on the walls the roughness of the wall and its nature change, at

times dramatically. Then the hydrodynamic resistance changes

as well.

The BAD and the BAD-based prediction of protein adsorp-

tion could help the lab-on-a-chip designers to address these

difficulties.
3.2. Comprehensive mapping of protein adsorption

experimental ‘space’

An alternative approach regarding the prediction of protein

adsorption, entirely opposite to the approaches based on models,

either molecular or thermodynamic, is to comprehensively map

the multidimensional experimental ‘space’, i.e., the [protein

parameters] � [surface parameters] � [solution parameters]. A

similar comprehensive, largely parallel experimentation has been

routinely used for more than a decade in the form of combina-

torial chemistry for drug discovery,16,17 but also for materials

discovery.18,19 Although not explicitly combinatorial, this

approach has been attempted, most notably when interfacing

representative proteins with ‘model’ surfaces made of self-

assembled monolayers (SAMs).26 The complementary effort to

combinatorial techniques, denominated as Quantitative Struc-

ture-Activity Relationship (QSAR)27 has been also attempted,

but in an ‘inverse’ manner, i.e., using neural networks tech-

niques28 to optimise the properties of polymers for fibrinogen

adsorption, rather than predict the protein adsorption on any

given material.

Decades-long research regarding protein adsorption would

have offered hope that enough agreement was reached following

the large amount of experimental data generated. The—so
Lab Chip, 2009, 9, 891–900 | 895



far—intractable difficulty of the process of protein adsorption, as

well as its ubiquitous importance, generated a large amount of

empirical data scattered through several decades of scientific

literature. This contribution aims to collect, filter and organize

this large amount of this unintended combinatorial data

regarding protein adsorption in a database that can be used for

further QSAR-orientated studies.
3.3. Distribution of the protein adsorption descriptors in the

BAD

Proteins. The distribution of the molecular weights and of the

isoelectric points of the proteins represented in the BAD is shown

in Fig. 2a and 2b, respectively. While the proteins represented in

the BAD are small, medium and large sized, the large majority of

data (approximately 72%) are cases for proteins with small

molecular weight (between 6 and 85 kDa). This distribution is the

result of the over-representation of albumin, lysozyme and

fibrinogen. A very small percentage of cases refer to proteins with

high molecular weights, (e.g., 0.8% for immunoglobulin). The

distribution of the cases versus isoelectric points of the proteins is

also the result of the overrepresentation of lysozyme (IP ¼ 11)

and albumin (IP ¼ 4.7) and fibrinogen (IP ¼ 5.4), the latter two

resulting in a larger cluster for IP between 4 and 7.

The molecular weights, isolectric point, hydrophobicity and

surface tension have been estimated from the amino acid
Fig. 2 Distribution of the properties of the proteins present in the BAD:

(a) molecular weights, (b) isoelectric points.
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descriptors, weighted by the relative amino acid composition of

the protein. The molecular weight and the isoelectric point are

parameters that are independent of the tertiary and quaternary

structure of the protein and therefore their estimation from the

primary structure is uncontroversial. The protein hydropho-

bicity and its surface tension are however properties that should

manifest on the molecular surface of the protein, at least as

adsorption on surfaces is concerned. Consequently, their esti-

mation should be—ideally—derived from the molecular surface,

which in turn depends on the tertiary and quaternary structure

of the respective protein. Alternatively, all protein descriptors

can be included in the BAD as reported in the literature.

Despite all of these considerations, the estimation of the protein

descriptors as implemented in BAD was dictated by practical

considerations. First, the protein adsorption literature very

rarely reports the molecular weight and isoelectric point of the

protein used, and almost never its hydrophobicity and surface

tension. Second, the unavailability of PDB structures for a large

proportion of cases in the BAD would have drastically reduced

the size of the statistical population and compromised the

quality of the prediction of protein adsorption. Third, even if

the molecular structure of the proteins were available, the

quantum mechanics calculations will be prohibitive even for

medium size systems. Fourth, the molecular weight and the

molecular surface-related parameters are statistically correlated:

at higher molecular weights the overall hydrophobicity will be

lower than at lower molecular weights, due to the creation of

the hydrophobic core. For all these practical reasons, the data

as implemented in the BAD used the primary structure for the

estimation of protein descriptors. Further developments, e.g.,

availability of more protein PDB structures, estimation of

protein properties at sub-molecular scale, will be constantly

implemented and thus improve the quality of the BAD-based

predictions.

Surfaces. From the histogram in Fig. 3, which shows the

distribution of the contact angle data of the surfaces present in

the BAD, it is evident that the hydrophobicity of the adsorbing

surfaces aggregate in two distinct clusters: hydrophilic surfaces

with contact angles between 0 to 45�; and a flatter cluster with

contact angles between 70 and 120�, with few cases bridging these

two main clusters.
Fig. 3 Distribution of the contact angle of surfaces in the BAD.

This journal is ª The Royal Society of Chemistry 2009



Fluid media. The histogram in Fig. 4a represents the distri-

bution of pH of the entries in the BAD. The large majority of

reported experiments (700 cases) were performed in the neutral

pH region (pH ¼ 6.6–7.7) with the total pH range spanning from

2.75 to 11. In the absence of any information regarding the

charging of the adsorbing surfaces, we preferred to record the

absolute difference between the isoelectric point and the pH of the
Fig. 4 Distribution of the parameters of the fluid media in the BAD: (a)

pH of buffers, (b) difference between pH of buffers and isoelectric points

of proteins, (c) ionic strength of buffers.
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buffer, with the distribution presented in Fig. 4b (mean value ¼
2.31). The distribution of the ionic strength of the buffer (pre-

sented in the Fig. 4c) indicates the experimental preference for

either buffers with very low content of ions, or an ionic strength

around 0.15. The overall ionic strength range spans from 0.001 to

0.42.

Protein concentrations. The distributions of the protein

concentration in solution and on the adsorbing surface are pre-

sented in Fig. 5a and 5b respectively. As expected, much of the

data in the BAD is a reflection of protein adsorption experiments

at low concentration in solution (91.4% up to 2 mg/ml), and

consequently a lower concentration of the surface (79.43% up to

5 mg/m2). We should note however that the overall range of

protein concentration in solution and on the adsorbing surface

spans several orders of magnitude.
3.4. How representative is the BAD?

A question relevant to the prediction of protein adsorption based

on the BAD is whether this database is large enough to be

statistically representative for the included proteins. Neural

networks and regression analysis can help to provide an answer

to this question.
Fig. 5 Distribution of proteins concentration: (a) in solution, (b) on the

surfaces.
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First, for the neural network analysis applied to the whole

BAD (420 cases; all taken from adsorption isotherm experi-

ments) the error of estimation (test error) of the best neural

network reaches a minimum (around 7%) around 150–200 data

points, which suggests that a few hundred data points suffice to

produce a reasonably accurate prediction for the proteins rep-

resented in the BAD. Even more interesting is the observation

that less data points (a result of the splitting the data in two

sub-sets) are needed to achieve the same or lower errors for

the sub-sets describing protein adsorption on hydrophilic and

hydrophobic surfaces, respectively. The results of the neural

networks analysis (details in the ESI†), strongly suggest that the

BAD is large enough to be representative and that further

improvements would be the result of additional data for other

proteins, surfaces and fluids, and/or more precise measurements,

rather than duplication of the present data.

Second, the regression analysis using linear regression with

break point resulted in good statistical fits, i.e., a correlation

coefficient, R2 of 84.75%, 84.33% and 86.68% for the whole

BAD, the hydrophilic, and the hydrophobic surfaces database

subsets, respectively. This good fit strongly suggests that the

input variables (protein-, surface- and fluid-descriptors; and

protein concentration in solutions), as they are represented in the

BAD, are in good correlation with the output variable (protein

concentration on the surface). These regression results (presented

in the ESI†) are not appropriate however to devise relationships

that can be used for the prediction of protein adsorption,

because, for multiple linear regression, the position of the

breakpoint is obtained at the intersection between the regression

planes rather than lines—and this does not usually result in

a unique point in the multidimensional descriptors ‘‘space’’.

Conceptually, these results suggest that the BAD is also repre-

sentative with regard to the correlation between the protein

adsorption parameters.
3.5. Prediction of lab-on-a-chip design parameters

Prediction of the amount of adsorbed protein. Further optimi-

sation of the neural networks allowed the identification of a set of

networks that accurately predict the amount of protein adsorbed

on the surface. The quality of the neural networks-based

prediction is remarkable: correlation coefficients of 0.95 and

0.97, for data regarding hydrophobic and hydrophilic surfaces,

for comparisons forcing the regression through the origin (more

detailed information in the ESI†). These neural networks-based

routines are implemented in the BAD, where the user can esti-

mate the amount of adsorbed protein when specifying the protein

name, solution pH, isoelectric point, water contact angle and

protein concentration in solution. It should be noted however

that this accuracy could be the sign of over fitting by neural

networks, in particular for proteins that are under-represented in

the BAD. Consequently, the user should check at all times the

validity of the predictions, e.g., attempting to build a Langmuir-

type isotherm curve.

Prediction of the thickness of adsorbed protein layer. The

development of increasingly complex lab-on-a-chip devices,

with an increasing level of integration and density of micro-

fluidics components per chip area, translates in the shift from
898 | Lab Chip, 2009, 9, 891–900
micro- to nano-fluidics structures. Before getting to the point

where nanofluidics are required to handle single, but large

biomolecules,29–31 the narrowing of the channels following the

deposition of the adsorbed biomolecules on the walls start

to have a sizeable impact over the flow and consequently

the design of the chip for nominal widths below 2 mm.21 The

prediction of the amount of the adsorbed protein allows for

the estimation of the thickness of the protein layer adsorbed on

surfaces. This procedure, described in detail in the ESI,† is

implemented in the BAD as an applet that allows the user to

estimate the protein layer thickness as a function of protein-,

surface- and fluid-descriptors. While the vast majority of the

data in the BAD represents protein layer thicknesses up to one

monolayer, the prediction can estimate higher values. The

values estimated for protein layer thickness are minimum

values, as we assumed the closest packing of proteins and

ignored the inherent uptake of water in the protein layer.

Prediction of the surface tension of protein-covered surfaces.

While the utility of the prediction of protein layer thicknesses

might be restricted to the design of nano-sized channels, the

impact of the change of surface tension of the surfaces of the

micro/nano-fluidics structures following protein adsorption

should have a wider impact on lab-on-a-chip design. The pre-

dicted change of the surface tension of the material the lab-on-

a-chip device is made of, during its operation, should provide

optimum designs for the whole life of the device. Similarly with

the two predictive tools described above, the prediction of the

surface tension of protein-covered surfaces is implemented as an

applet of the BAD website, which allows the estimation as

a function of protein-, surface- and fluid descriptors.

We need to qualify the prediction of the surface tension of the

protein-covered surfaces. The estimated surface tension of

protein-covered surface is calculated from the contributions of

the bare surface and the pure protein, weighted according to their

relative coverage of the total surface. The estimated surface

tension of the pure proteins (by a procedure detailed in the ESI†)

has provided results that are lower than the experimental data

published in the literature,32 which reports the surface tension of

pure proteins adsorbed on the surface (full coverage) from saline

contact angle measurements on thick layers of the hydrated

proteins. This difference can be explained by the fact that while

our estimation of the surface tension of pure proteins takes into

account all amino acids, the hydrophobicity of the protein

manifests more on the molecular surface of the protein.

Furthermore the amino acids present on the protein molecular

surface are likely more hydrophilic than those inside the protein

core. Also our prediction could not include the inherent uptake

of the hydration water. With all these qualifications, the esti-

mated surface tension of the surfaces of lab-on-a-chip devices in

operation is certainly closer to the working reality, and therefore

should be preferred in the design calculations to values for bare

surfaces.
3.6. Perspectives and future work

This contribution presented a database regarding the protein

adsorption and—using a sub-set of the database—also a

predictive method to estimate the parameters relevant to the
This journal is ª The Royal Society of Chemistry 2009



lab-on-a-chip design. A more comprehensive database and

a more accurate prediction could have been produced, if not for

several problems related to the measurement and reporting of

published protein adsorption data. Despite these shortcomings,

the present and the near future offer many opportunities to

greatly improve the quality of the database and prediction of

protein adsorption, as follows.

Standardisation. The literature on protein adsorption is very

large, with the major literature databases listing several thou-

sands of titles with ‘‘protein adsorption’’ as a key word, e.g.,

PubMed 1800; Scopus 4000; ISI Web of Knowledge 6000, etc.

Despite this enormous body of knowledge and despite several

years of the authors’ filtering through thousands of articles, only

a very small fraction of the total literature could be useful for the

BAD. The main difficulty in integrating this large amount of data

lies in the under-reporting of the experimental conditions, i.e.,

protein, surface and fluid environment conditions. While the

protein descriptors are perhaps more difficult to quantify, the

surface, and certainly the fluid environment descriptors are far

easier to report. Mutually agreed guidelines, if not standardiza-

tion, similarly with the common practice for other databases

(e.g., PDB) would greatly improve the capacity of the scientific

community to adsorb the enormous experimental knowledge

regarding protein adsorption. Our on-line data submission

portal proposes a tentative guideline for reporting protein

adsorption data (see ESI†).

Protein descriptors are the most under-reported set of

parameters related to protein adsorption, despite their general

availability in multiple databases, e.g. PDB, FASTA, etc. Should

these descriptors be reported as a matter of common practice,

the relationship between protein characteristics and protein

adsorption would become much easier to characterise and

quantify. Furthermore, the present work correlated the protein

adsorption (outputs) with protein descriptors (inputs), but these

have been calculated from the protein primary structure rather

than from the properties on the molecular surface. It would be

expected that the properties manifested on the protein molecular

surface, in particular the hydrophobicity, would have a stronger

relationship with protein adsorption (although some protein

descriptors, e.g., the charges, would be parameters that are

‘bulk’-based rather than molecular surface-based). Conse-

quently, the quantification of some of the protein descriptors on

its molecular surface almost surely would improve the prediction

of protein adsorption. However, in order to reach this desider-

atum, new algorithms and methodologies need to be developed,

as the present quantification of the molecular surfaces is tailored

for drug discovery applications, i.e., using high resolution (water

or solvent molecule, Å-range) probing of the protein surface,

while protein adsorption is essentially the result of the interac-

tion between the protein surface and adsorbing surface at—

relatively—low resolution (surface nanotopography, few

nm-range).

Surface descriptors are also under-reported in the literature.

This is only partially justified by the experimentally-problematic

measurement of the contact angle, e.g., its dynamic nature, but

these measurements are relatively trivial compared with the

measurements of protein concentration of the adsorbing surface.

The development of biomedical microdevices, in particular

micro/nanoarrays and lab-on-a-chip devices, makes the impact
This journal is ª The Royal Society of Chemistry 2009
of the surface more relevant than ever. Several developments are

critically needed for a better characterisation and prediction of

protein adsorption. First, the surfaces will need to be fully

characterised from the electrical point of view, e.g., point of zero

charge (pzc), zeta potential, especially in the context of lab-on-

a-chip applications. Second, the nanotopography of the surface,

often in the range of several nanometres, is likely to interact at

the molecular scale with the proteins that have similar dimen-

sions, especially in solutions with low concentrations—as is the

case for most biomedical microdevices. Somehow related, the

extended exposure of the polymer surfaces to the fluid media

surface can cause changes in the macromolecular structure, in

which case the protein-surface interactions become even more

complex. Third, a full description of the chemistry, which was

available in the BAD only for a small number of cases, would

allow the automatic calculation of the physico-chemical prop-

erties of the adsorbents (e.g., surface potential, surface charge

density, pI (or pzc), Hamaker constant). This capability will be

added in future versions, in connection with web-based pro-

grammes (e.g., MODEL–Molecular Descriptor Lab;33 Polymer

Database PoLyInfo34 and other methodologies used to estimate

these properties from the chemical structure of polymer mate-

rials.35,36 Fourth, as the immobilisation of proteins on the surface

is increasingly done for the benefit of ultra-sensitive, single

molecule detection devices, there is an imperative need to fully

characterise the surface morphology and physico-chemistry with

nanometre-level resolution. The mature development of Scan-

ning Probe Microscopies, in particular Atomic Force Micros-

copy, makes this desideratum an achievable target.

Fluid descriptors are usually the easiest to report, but are still

rarely fully described. Lab-on-a-chip applications in particular,

where for instance the ionic strength of the buffer could be

a critical element in the design of appropriate fluid flow, require

the full characterisation of the fluid environment conditions.

Whenever possible the reporting of the correlation between the

flow conditions and the structure or bioactivity of the immobi-

lised proteins will be of particular relevance to lab-on-a-chip

applications.

Combinatorial experiments in microfluidics. Most, if not all of

these challenges and additional requirements are counter-

balanced by the opportunities offered by lab-on-a-chip

devices.37,38 Conceptually, the large number of the combinations

of different surfaces would suggest running combinatorial

experiments in a microarray format, but the long contact times

between the surface and the protein solution, as well as the large

number of combinations of the fluid (protein concentration, pH,

ionic strength) recommends a microfluidics coupled with

a microarray approach. Moreover, several methods for the

absolute measurement of the mass of adsorbed proteins, e.g.,

ellipsometry have been miniaturised together with inherently

microscopy based methods (e.g., confocal microscopy). Indeed

a combinatorial experiment using modern scanning ellipsometry,

which requires an approximate 200 � 200 mm footprint, would

result in approximately one thousand experiments on 1 cm2.

Certainly such a combinatorial experiment would require

nontrivial logistics, design, operation of the chip, and data

management of the information, but to put things in perspective

this experiment alone would more than double the amount of

protein adsorption experiments recorded in the BAD.
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Conclusions

While protein adsorption at solid–liquid interfaces is important

to many applications, but its impact to the design and operation

of lab-on-a-chip devices is critical due to the small dimensions

involved and due to the transient regime in which these devices

usually operate. Despite the general interest and a large amount

of research in the last half a century, the complexity of protein

adsorption phenomenon precluded a design-orientated predic-

tion. The online, free-access Biomolecular Adsorption Database

(BAD) presented here aims to alleviate this gap in the engineering

knowledge. Furthermore, the data present in the BAD allowed

for the derivation of predictive tools that can estimate the

amount of adsorbed protein, the thickness of the adsorbed

protein layer, and the surface tension of the protein-covered

surfaces. Lab-on-a-chip device design will require further

advances in protein adsorption research, but equally can

contribute to an efficient experimentation plan for the benefit of

all interested areas.
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