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a b s t r a c t

We present a general-purpose optimization algorithm inspired by “run-and-tumble”, the biased random
walk chemotactic swimming strategy used by the bacterium Escherichia coli to locate regions of high nutri-
ccepted 23 May 2008
ent concentration The method uses particles (corresponding to bacteria) that swim through the variable
space (corresponding to the attractant concentration profile). By constantly performing temporal compar-
isons, the particles drift towards the minimum or maximum of the function of interest. We illustrate the
use of our method with four examples. We also present a discrete version of the algorithm. The new algo-
rithm is expected to be useful in combinatorial optimization problems involving many variables, where
the functional landscape is apparently stochastic and has local minima, but preserves some derivative
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. Introduction

The correspondence between living systems and computers has
een stressed in recent years (e.g. Bray, 1995; Nicolau and Nicolau,
006). Many biological processes can be thought of as processes
f constrained optimization. Therefore, the mechanism or mech-
nisms used by a biological system to carry out a function is
nalogous to an algorithm or set of algorithms; the biological sys-
em is then an unconventional computer; and an instance of such a
rocess taking place is analogous to a computational run. Of course,
here are enormous differences between ‘biological computing’
nd ‘classical computing’. Biological computations are massively
arallel, feature a large degree of stochasticity and (intrinsic and
xtrinsic) noise – which, aside from being unavoidable, also plays
direct role in the computation – and, rather than being able to

ompute individual functions with high precision, deal instead with
roblems of a ‘systems engineering’ flavour, such as the control of
ery large systems, in the presence of non-linear constraints.

Because living systems are adapted to the environments in
hich they exist and therefore to the computational tasks required
or survival, these natural computing paradigms are expected to be
uccessful for dealing with problems similar to those confronting
iosystems (Nicolau and Nicolau, 2006). An increasing number of
lgorithms are based on or inspired by biological strategies. These

∗ Corresponding author.
E-mail address: nicolau@maths.ox.ac.uk (D.V. Nicolau Jr.).
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nclude neural networks (Basheer and Hajmeer, 2000), evolution-
ry computing (Eiben and Smith, 2003), DNA computing (Adleman,
994), particle swarm optimization (Call et al., 2007), comput-
ng with bio-agents (Nicolau et al., submitted for publication),
nt optimization algorithms (Dorigo and Blum, 2005) and oth-
rs. Increasingly these methods have been successfully applied to
spectrum of problems ranging from pattern identification and
atching to aerodynamics engineering problems (Obayashi, 1997)
Chemotaxis, the process by which organisms direct their move-

ents according to certain chemicals in their environment, is
rucial for many biological functions. Bacteria such as Escherichia
oli use chemotaxis to find food (for example, glucose) by swim-
ing towards the highest concentration of food molecules, or to

ee from poisons (for example, phenol). In multicellular organisms,
hemotaxis is critical to development as well as normal function
Wadhams and Armitage, 2004). By analogy with the process of
nding the maximum of a function (represented by the attractant
oncentration profile in space), chemotaxis is a algorithm for opti-
ization. This computational facet of chemotaxis has already been

oted by several authors (Bremermann, 1974; Muller et al., 2002).
ecently, Vergassola et al. (2007) proposed a chemotaxis-inspired
earch method in the absence of gradients.

In this paper, we present a biocomputation approach that is

ased on the “run-and-tumble” chemotactic mechanism of the bac-
erium E. coli. This method is essentially a general-purpose search
lgorithm that can be used to optimize a function or set of functions.
he method bears some resemblance to particle swarm optimiza-
ion (PSO) in that the potential solutions (the particles) move

http://www.sciencedirect.com/science/journal/03032647
http://www.elsevier.com/locate/biosystems
mailto:nicolau@maths.ox.ac.uk
dx.doi.org/10.1016/j.biosystems.2008.05.009
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hrough the function space. However, unlike PSO or, for example,
nt colony optimization, it does not use inter-particle communica-
ion and does not bias the trajectories based on the best solutions
ound over time, relying instead completely on the chemotactic
rift property of bacteria to converge locally (not as a swarm) to
olutions. We illustrate the potential of the method by applying it
o four representative optimization problems of different types. We
lso present a discrete version of the algorithm.

. Methods

We begin by briefly describing the chemotactic swimming pattern of E. coli, on
hich our algorithm is based. E. coli is a common intestinal bacterium, cylindrical

n shape and roughly 2 � m long and 1 � m wide. Each cell is equipped with approx-
mately six flagella, each with a rotary motor at its base, embedded in the cell wall.
he flagella are randomly distributed on the cell membrane. The rotary motor can
urn clockwise and counter-clockwise at different times and is reversible. When all
he motors turn in concert in a counter-clockwise direction, the flagella form a bun-
le that propels the cell forward in a “run”. Runs are not perfectly rectilinear due to
otational Brownian motion that perturbs the cell direction by roughly 0.5

√
t, where

is in seconds. If one or more of the motors reverse direction and turn clockwise, the
undle becomes unstable and the cell turns in place (“tumbles”) in a random fashion
nd with negligible displacement. This serves to reorient the cell; the orientation is
ot perfect and there is some persistence of direction after a tumble (the mean angle
etween the direction before and after a tumble is 63◦) (Locsei, 2007). We omit this
roperty in the present work, assuming that the reorientation is perfect.

E. coli cells use the system of motors and flagella to execute chemotactic swim-
ing towards regions of high nutrient concentration (or away from toxins) as

ollows. Due to the high stochasticity of the environment and its small size, the
acterium cannot accurately measure an attractant gradient across its body. In lieu
f computing a spatial gradient directly, a simple biochemical memory mecha-
ism is used to perform temporal comparisons. During swimming, the bacterium
onitors the concentration of chemoattractant (e.g. serine or aspartate) in the envi-

onment, comparing the average concentration measured over the last second with
hat measured over the previous 3 s. If the comparison indicates that the attractant
oncentration has increased, the cell is more likely to continue a straight-line run,

hile if it indicates that conditions have deteriorated, it is more likely to reorient

y performing a tumble. In this way, the bacterium performs a biased random walk,
eading it (in a stochastic fashion) up a chemoattractant gradient. In the absence of
ny such gradient, both the run and tumble times are exponentially distributed with
eans of 1.0 and 0.1 s, respectively (Locsei, 2007).

ig. 1. Finding the global maximum in a Gaussian gradient field. Five hundred con-
ecutive iterates of the colony centre (starting at the lower right) are shown in green;
igher values of the attractant are shown as shades of red. The circle indicates the
oint at which the 250 particles are initialized.
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We propose to use an analogous strategy to locate regions in a multi-dimensional
pace where a continuous (respectively discrete) function takes a global maxi-
um (or minimum) value. We define such a “bacterial optimizer” B as a set of n

articles (b1, b2, . . . , bn), each possessing an m-dimensional position vector func-
ion pi(t) and a velocity vector function vi(t) such that pi ∈ �m, vi ∈ �m, i = 1, . . . , n
nd t ∈ N. This is the continuous version of the algorithm (a discrete version is
escribed below). Let f : �m → � be the objective function and let x̂i = maxt>0xi(t)
nd ĝ = maxxf (xi), i = 1, . . . , n. Let U[x, y] be a random number between x and y,
ndependently sampled from the uniform distribution and let N(�, �) be a ran-
om number independently sampled from the normal distribution with mean �
nd standard deviation �. The algorithm proceeds as follows (the meanings of the
unctions T and A and the various parameters are described after the algorithm):

Convergence can be decided either by setting an upper limit on the number of
terations tmax or by setting an acceptable value for f (ĝ).

The tumbling probability function T is calculated as follows:

(t, i) =
{

pw, Ai(t) < 0
pb, Ai(t) ≥ 0

(1)

where

i(t) =
min(wr +wd,t)∑

�=0

f (xi(t − �))M(t) (2)

nd M : � → � is a memory comparison function, which can take any number of
orms but which we define for simplicity here as

(�) =

⎧⎨
⎩

1
wr

, 0 < � ≤ wr

− 1
wd

, wr < � ≤ wd

0,otherwise

. (3)

The meaning of each of the parameters is as follows. � is a speed factor for the
articles in the functional search space, since the elements of vi are bounded by −1
nd 1. ˇ is a strictly positive parameter that if greater than 0 ensures that the runs
re not perfectly straight and simulates rotational Brownian motion during a run.
w and pb are probabilities of tumbling if conditions have improved (A(t) ≥ 0) and

eteriorated (A(t) < 0), respectively. In practice, the probability of tumbling must
e larger if conditions have deteriorated than if they have improved, so we have
w > pb . wr and wd are the number of iterations (window lengths) over which the
ecent and distant past are averaged, respectively. A balance must be struck between
ccuracy (using longer window lengths) and fast response time to improving or
eteriorating conditions (leading to the use of shorter window lengths). Because
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. coli compares (roughly speaking) the last second of its life with the previous 3 s
uring chemotactic swimming (Strong et al., 1998), this would suggest a simple rule
f wd ≈ 3wr . In applying our algorithm to different functions, this is likely to be vary
ith the nature and properties of the function in question.

An issue particular to the use of iterative algorithms (a large class of which the
ew algorithm is a member) is stalling, a phenomenon characterised by many iter-
tions without any improvement (Li et al., 2006). Occasionally, this is caused by
aving found the global optimum but usually it is caused by the algorithm either
aving ‘passed by’ the optimum or having become stuck in one or more local min-

ma. One way to deal with stalling is to perturb the algorithm in some way in order
o escape the local minimum or to explore new regions. A potential implementation
f this strategy for ‘extremotaxis’ is to force all the particles (bacteria) to tumble if
o global improvement has been seen for some time. This can be done by modi-

ying the probability of tumbling, calculated in the main loop of the algorithm, as
ollows:

r(tumble) =
{

T(Ai(t)), ε < εcritical
1, ε ≥ εcritical

(4)

here ε is the number of iterations since the last improvement in the global opti-
um found (this must be recorded over the course of the computation) and ε is the

ritical number of iterations required to trigger a forced ‘colony’ tumble.
It is also possible to modify our algorithm so that it can be applied to discrete

roblems. The key change is to restrict the elements of the velocity vector vi to
ositive values smaller than 1 and to treat these as probabilities of the entries in

i changing state. For example, for a problem in which the variables can only take
inary values (0 or 1), an element of vi equal to 0.1 means a 10% probability that
he corresponding element of xi will change state at the next iteration of the algo-
ithm. Additionally, the speed � should be set to 1 in order for the probabilities to
e guaranteed to be between 0 and 1. In problems where the variables can take a
umber of discrete values (for example where they can take any positive integer
alue), each element of xi could, of course, be incremented by 1 or decremented by
; therefore, the “direction” of the increment should be chosen at random. Finally, it
ay be desirable to use increments greater than 1 (this would correspond to using
greater speed, in the continuous version of the algorithm). If this is done, then

n order to avoid equal-sized increments at each point where a variable changes
and thus miss intermediate values), the size of the jump should be sampled from a
uitable probability distribution with a mean of �, where � is the average increment
ize.

One issue if using this discrete version of the algorithm is that an appropriate
tness function may need to be more carefully chosen (or would be more difficult
o find) than in the continuous version. In the latter, the fitness is evaluated simply
s the value of the function at the point in m-dimensional space represented by the
osition vector. However, in the case of a discrete function, if the number of values
hat the function can assume is small or if these values are not consecutive (or both),
his may not be appropriate. This is because the algorithm relies on “tumbles” being

ore likely when the fitness is relatively inferior and less likely when it is close to
he desired value. Therefore, using the value of the function as the fitness function

ay result in completely stochastic behaviour. We illustrate the issue using a simple
NP-complete) problem: Boolean satisfiability. Here it is required to determine, for a
oolean expression in n variables, what set of values for the variables (if any) makes
he expression TRUE. Using a fitness function that simply takes the values 1 (for
rue) and 0 (for false) would not be advantageous in this case, reducing effectively
o a random search through the function space (which would require exponen-
ial time proportional to 2n . A more appropriate choice of fitness function may
e

(x) = max
all z

c(z) − c(x) (5)

here c(x) is the number of clauses in the Boolean expression that evaluate to 0.
n this way, the algorithm would favour position vectors x that result in a smaller
umber of such clauses evaluating to 0, thus in some sense being closer to finding a
ombination of variables that will cause the Boolean function to evaluate to TRUE.
f course, other possible fitness functions exist and in general it is to be expected

hat the choice of fitness function would vary with the problem and the deter-
ination of a suitable such function would present difficulties for some discrete

roblems.

. Results

We implemented our algorithm using MATLAB and applied

t to three different optimization problems. The first of these is
rivial: finding the maximum of a two-dimensional Gaussian func-
ion. The second is finding the global minimum of a difficult
wo-dimensional function with many local minima. The third is
oncerned with how n particles should be distributed on a sphere
o as to minimize the potential energy of the system.

3
s

r

ems 94 (2008) 47–54 49

.1. Finding the maximum of a Gaussian function

In order to demonstrate the operation of our algorithm, we first
pplied it to the Gaussian function:

(x, y) = 1
2��2

e−((x−x0)2+(y−y0)2)/(2�2). (6)

The Gaussian is an attractive first choice for a two reasons. Firstly,
ecause the fundamental solution of the diffusion equation is a
aussian, we might expect naturally occurring attractant gradients

o take this form and therefore, due to adaptation, we might expect
acterial chemotaxis to be efficient at finding the global maximum
f such a function (corresponding, in vivo, to, for example, finding
he point of maximum nutrient concentration in a local environ-

ent). Secondly, it possesses a continuous and smooth gradient
hat is everywhere non-zero. It is, nonetheless, a non-trivial func-
ion.

Fig. 1 shows a typical simulation of the algorithm. A colony
f 100 particles is initially distributed at random points chosen
rom xinit ∈ [−3, 3] and yinit ∈ [−3, 3]. We also randomly choose
0 ∈ [−3, 3] and y0 ∈ [−3, 3]. The initial velocity vectors are also cho-
en at random such that directions are uniformly distributed in
−�, �] and the magnitude of each direction vector is 0.02. We also
et � = 1 for simplicity. The figure shows the first 500 consecutive
terations, with the maximum value found converging to the true

aximum at (x0, y0).

.2. Optimizing a difficult two-dimensional function

We next applied our algorithm to Problem 4 of the 100-digit
hallenge (Trefethen, 2002; Strang, 2005). This problem asks for
he minimum of the function

f = esin 50x + sin(60ey) + sin(70 sin x)

+ sin(sin(80y)) − sin(10(x + y)) + 1
4

(x2 + y2)
. (7)

It is made difficult by the presence of many local minima
hat are very close to the global minimum—the latter is approx-
mately fmin ≈ −3.30686864747523728 and occurs at (x, y) ≈
−0.0244030796943785, 2.10612427155358). Fig. 2 A illustrates
he difficulty, with a graph of the function showing the behaviour
ear the global minimum.

With the bacterial algorithm, setting up the problem consists of
lacing a number (250 in our computations) of particles at random

n the two-dimensional function space near the minimum (−5 ≤
≤ 5, −5 ≤ y ≤ 5 are appropriate intervals) and randomising their
irections. Again, the behaviour of the algorithm is good—Fig. 2 B
hows the percentage difference of the algorithm’s best estimate
rom fmin over the course of a computational run. The 2000 iter-
tions require, for 250 particles, only 2–3 s of computer time (on
1-GHz desktop machine running MATLAB) to find the minimum
ith 8-digit accuracy (9-digit accuracy requires tens of seconds on

he same machine). In the simple implementation presented here,
he memory function and other parameters such as the particle
elocity, directional persistence, etc. have not been optimized; this
ime would be reduced by some (unknown) factor if these steps
ere taken.
.3. Finding the minimum-energy configuration of particles on a
phere

Lastly, we applied our algorithm to a difficult n-body configu-
ation problem: how to distribute n particles on a sphere so as to
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Fig. 2. (A) A graph of the function in Eq. (7), showing the complex behaviour near
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Table 1
Lowest energy particle arrangements found with ‘taxis’ compared with previously
published values

Number of particles Lowest energy

Hardin et al. (1996) ‘Taxis’ algorithm

5 6.4746915 6.3395412
10 32.7169495 30.2804821
15 80.6702441 77.9961307
20 150.8815683 142.582206
25 243.8127603 238.313036
30 359.6039459 351.460535

Computations were carried out on a 3.4-GHz IBM machine with 1 GB RAM, running
M TM
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here.
he global minimum. (B) Finding the minimum of this function using taxis. The
ertical axis shows the percentage difference between the best estimate, f (ĝ) and
he (known) global minimum.

inimise the potential energy

=
∑
i /= j

1
d(i, j)

(8)

here d(i, j) is the (great-circle) distance on the sphere between
articles i and j. This problem is computationally difficult because,
imilarly to the n-body problem and to protein folding, the potential
nergy space to be searched grows very rapidly with the number
f particles—at each iteration of a search algorithm, all pairwise
istances must be re-evaluated. Additionally, because a small dif-
erence in even a single distance can make a large difference to the
um, a brute force search will fail due to the fine required parti-
ion of the search space. Approximations to optimal configurations
or this problem are known (Hardin and Sloane, 1995) for various
umbers of particles.

To apply the taxis algorithm to the problem, first we convert the
oordinates of the particles to spherical coordinates (latitude and
ongitude). For two particles i and j, let 	i and 	j be the latitudes
nd 
i and 
j the longitudes. Then the great-circle distance on a
phere of unit radius is
(i, j) = arccos{sin 	 i sin 	 j + cos 	i cos 	 j cos(
i − 
j)}. (9)

Each bacterium in the computation represents one possible
olution, i.e. one arrangement of particles. The n-dimensional
ocation vector of each computational agent i is then pi =

F
m
p

ATLAB version 7.1. Each run consisted of 40,000 iterations, corresponding to
0 s total for the n = 30 (slowest) case.

(	1, 
1); (	2, 
2), . . . (	n, 
n)} and the velocity vector is vi =
�1, �2, . . . , �n}, where �j is the bearing of the jth particle, with
j ∈ [−�, �]. The location and velocity vectors are initially chosen
t random for each computational agent (we used 20 in our simu-
ations). Note that with this definition, a tumble corresponds to all
he particles in one potential solution reorienting.

At each step of the calculation, the optimum arrangement
mong the k agents (the one with the smallest potential energy)
s recorded and represents the best arrangement found up to
hat point. Using larger values of k increases the probability of
apid convergence and decreases the probability of the entire sys-
em becoming stuck in local minima, but increases the running
ime in proportion to k. Table 1 presents the results of this algo-
ithm (left column) compared with the values given by Hardin
nd Sloane (1995). Remarkably, ‘taxis’ seems to find more opti-
al arrangements than those previously known. Fig. 3 shows the

onvergence of the system to these values for different numbers
f particles (in all results shown, the computations were stopped
fter 20,000 iterations). The algorithm converges quickly and repro-
ucibly in all cases. Adding a tumbling perturbation to the system
very 100–1000 iterations to combat stalling does not have a
ignificant effect on the performance. However, since the values
ound are better than those known (Hardin and Sloane, 1995) and
robably very close to optimal, this is not a major consideration
ig. 3. The convergence of a system of agents to the lowest potential-energy arrange-
ent of n particles on a sphere (dotted line show the results with additional

erturbation after 1000 iterations of stalling).
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.4. Detection of microarray features

One the major difficulties of microarray technology relates to
he processing of large and, importantly, error-loaded images of
he dots on the chip surface (Qin et al., 2005). Whatever the source
f these errors, those obtained in the first stage of data acquisition
segmentation) are passed down to the subsequent processes, with
eleterious results.

The interpretation of the microarray data starts with the inte-
ration of the signal compared with the background on the area of
ndividual dots – segmentation – the results being further used for
laborate clustering methods (Qin et al., 2005). It follows that the
ncorrect demarcation of the circular dot features will propagate
hroughout the whole microarray data processing and will add to
he other sources of variability of microarray data: biological vari-
bility, technical variability and labeling (Zakharkin et al., 2005).
everal methods have been proposed to de-noise data (Adjeroh
t al., 2006). These include adaptative split and merge algorithm
Barra, 2006), polynomial-hyperbolic spot shape model in com-
ination with the Box–Cox transformation (Ekstrøm et al., 2004),
pectral embedding (Higgs et al., 2006), noise-resistant algorithms
Novikov and Barillot, 2006), background extraction (O’Neill and

agoulas, 2003), just to name few recent contributions. We tested

he performance of ‘extremotaxis’ on both computer-generated
artificial) microarray-like spots and real microarray images. Think-
ng about the intensity of an image as different levels of nutrient
oncentration in space allows us to use this algorithm to iden-
ify regions of high intensity. The form of the ‘attractant’ (image

�

t

Fig. 4. Spot regions and centres on a 2 × 2 model microarray located using the bac
ems 94 (2008) 47–54 51

ntensity profile) will affect the motion of the model bacteria.
e initially suppose for simplicity that the intensity of a spot

an be well described by a Gaussian function (see first exam-
le, above) and that the spots are arranged in a rectangular array
f boxes, each spot of different randomly chosen size (different
tandard deviation of the Gaussian) and each placed at a differ-
nt location within its home box (different spatial means of the
aussian).

To locate the centre of a spot that is located randomly inside the
imulation area, we can compute, at periodic intervals, the “centre
f mass” of the model bacteria as follows:

x =

n∑
i=1

xi

n
Cy =

n∑
i=1

yi

n
(10)

here xi and yi are the x and y coordinates of bacterium i. As bacte-
ia aggregate around the intensity centre of the image (the centre
f the spot), the point (cx, cy) approaches the true centre of the
ntensity spot. We can also obtain a measure of the dimensions
f the spot by computing the standard deviation of the bacterial
ositions:√√√ n∑ n∑

spot = √

i=1

(xi − cx)2 +
i=1

(yi − cy)2/n (11)

Gaussian intensity distributions lead to good performance of
he algorithm, possibly because in the natural habitat of bacteria,

terial algorithm. Each spot is a truncated Gaussian with � = 0.15 (see text).
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Fig. 5. Performance of the algorithm on a real 3 × 3 microarray image after 10

he nutrient is dispersed through diffusive processes, which are
ypically characterised by Gaussian or Gaussian-like distributions
since the fundamental solution of Fick’s equation takes this form).
owever, this form may not be a realistic model for a microarray

pot since, for example, we expect the edges of the spot to be much
harper than the long tail of a Gaussian distribution. We can simu-
ate this by truncating the Gaussians using a threshold of intensity �,
o that for all values of intensity below � we simply set the intensity
o 0. Eq. 10 can then be modified so that only the model bacteria
ocated on voxels whose intensity is non-zero will be taken into
ccount. Eq. 11 can be similarly modified. Typical results on a 2 × 2
rray are shown in Fig. 4.

Finally, we measured the performance of our algorithm on a
eal microarray image chosen from (Rhodes, 2005). Fig. 5 shows
he determined spot sizes and centres.

Importantly, the algorithm presented here has potential even if
he image is not segmented, as we have assumed it to be. In this

ore general case, the model bacteria would still converge on the
pots present in the image, but it would not be possible to identify
he number of spots or set bounds on their locations a priori. To solve
his problem, one would need to detect when a cluster of bacteria
as formed, this in turn requiring an algorithm dedicated to this
ask. One possibility is to mimic “quorum sensing”, a phenomenon
hereby bacteria not only consume but also release a chemoat-

ractant into the environment, to which they are in turn attracted.
ther bacteria are then attracted to this region and in such a way
stable cluster is formed. It would then be possible to identify a

luster formed by model bacteria when the mean “chemoattrac-
ant” distributed over a set of voxels exceeds a known threshold.
his will form the subject of future work.

. Discussion

We have so far presented four examples of problems that can

e tackled with our method. Clearly, the performance of the algo-
ithm, as is the case with any optimization algorithm, would depend
trongly on the nature of the problem under consideration. Why
ight we, in general, expect computing with taxis to perform well

t optimizing certain difficult functions? We can speculate on an

p
s
t
i
p

t) and 1000 iterations (right) (determined spot areas shown by solid circles).

nswer to this question. Because bacteria are the oldest motile
rganisms and because the environments in which they live are
omplex at different scales of space and time, it might be expected
hat they be very efficient at solving optimization problems, includ-
ng through chemotaxis. Recent work (Nicolau et al., submitted for
ublication) suggests that run-and-tumble is evolutionarily opti-
al and that, remarkably, this simple algorithm can for example

as a conservative estimate) locate on average more than 92% of
he total available nutrient in a Gaussian field. Furthermore, other
atural algorithms and biocomputation methods such as neural
etworks, evolutionary computing, DNA computing and (most sim-

lar to taxis computing), particle swarm optimization have been
uccessful. Therefore, there are general reasons to be optimistic
bout the potential of taxis computing for global optimization.

The question can also be asked in the opposite direction: for
hat types of functions would the method be expected to per-

orm well? Functions that are difficult to optimize because of the
resence of many local extrema are good candidates because they
esemble in some sense the natural environments of bacteria. If
e think of the presence of many such extrema as an “apparent

tochasticity” in the function (from the point of view of a parti-
le walking the functional landscape) then we can draw an analogy
etween noise in biological environment and the presence of many

ocal minima on this landscape. In other words, local fluctuations
n the derivative of a function are analogous to noise in a natural
nvironment, in this sense.

On the other hand, run-and-tumble relies on the presence of
radients to produce a drift towards favourable environments. If
he functional landscape is either extremely stochastic or discon-
inuous, no gradient will be reliably detected and, in the limit, the

ethod reduces to a diffusion-like random local search at a number
f random points (equal to the number of bacteria in the system)
n the landscape. This may not always be disadvantageous—for
xample, one can imagine funnel-like landscapes (similar to the

ostulated energy landscapes of folding protein) that possess
mooth gradients on the whole but become very stochastic near
he global minimum. In these cases, a combination of gradient-
nduced global drift and noise-induced random local search may
erform well. Nonetheless, taking these ideas together, we expect
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he type of function on which taxis computing will perform well
elative to other methods to possess local gradients on scales larger
han the characteristic velocity of the moving particles.

As mentioned, taxis computing bears some resemblance to
article swarm optimization. Both exhibit some attributes of evo-

utionary computing: each particle represents a potential solution,
hese solutions are initially randomly chosen, and the algorithm
roceeds by evolving the solutions from iteration to iteration, with
ach iteration being based on the last. Of course, both methods
re based on the concept of a set of particles moving through the
roblem space.

Two essential differences are that (a) in PSO the particles share
nformation about the best solutions found up to each point in the
omputational run and (b) in PSO the velocity of each particle in
he swarm is changing smoothly while in the model we propose
ere, the direction of each particle is constant during a run and is
andomized by a tumble. The first of these is particularly essential
ecause it means the swarm as a whole may become trapped in

ocal minima. In PSO, at each step the velocity of particle i is re-
valuated according to the equation (Call et al., 2007):

id = wVid + c1r1(bp − xid) + c2r2(bi − xid) (12)

here Vid is the velocity of the particle, xid is the position of the par-
icle, bp is the position of the best solution seen by the swarm as a
hole and bi is the position of the best solution found by the parti-

le. r1 and r2 are random numbers and c1, c2 and w are positive real
umbers representing the “weights” of the three terms. Because the
articles (a) cooperate amongst themselves and (b) remember and

actor in their best solution to date, a sufficiently good local mini-
um, once found, may trap the particle and in some cases the whole

warm. This cannot happen in taxis computing because these fea-
ures are not present; instead, each particle relies on the structure
f the local environment combined with random reorientations to
xplore the search space. Although it is possible (though not equally
ikely as in PSO) that an individual bacterium may become trapped
n a local minimum for a time, this cannot happen at the level of the
olony. Furthermore, because of the stochastic nature of run-and-
umble, its escape probability from this region will be non-zero
nd hence the residence time will be finite. Of course, the coop-
ration property of PSO is often valuable because the swarm as a
hole can converge towards a favourable region of the problem

pace, which can then be searched more efficiently; nonetheless,
he reinforcement of solutions already found at both swarm level
nd individual level means the algorithm has a higher probability
f missing the global minimum of functions with properties similar
o those described above.

Investigations of the performance of the discrete version of the
lgorithm will form the subject of future work. One can speculate,
owever, on the prospects of this method. On the one hand, because
hemotaxis relies on the presence of gradients—in the context of
omputing, a direct and well-behaved relationship between posi-
ion in n-space and fitness, we do not expect the method to perform
s well or as consistently for discrete functions, for which there is
ittle or no such correlation. For example, the difficulty in solving
oolean satisfiability stems from the property that a change in the
tate of one single variable (possibly among hundreds or thousands
f such variables) will be the difference between the expression
valuating as TRUE or FALSE. On the other hand, a discrete ver-
ion of PSO (Yang et al., 2004) has been successfully used to solve
arious discrete problems such as the capacitated vehicle routing

roblem (CVRP) (Ai-ling et al., 2006). Although in the worst case,
axis computing for discrete problems may reduce to a stochastic
andom search through the functional landscape (if tumble proba-
ility is uncorrelated with changes in the fitness function, or if these
hanges are very rare), in many cases the method may work well.
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his is expected to be the case, for example, when the position vec-
or (i.e. the independent variables) is simply restricted to integer
ntries, as might happen for an integer optimization problem.

In the numerical results presented here, we have used a mem-
ry function of the form in Eq. (3) with wd ≈ 3wr , because E. coli
ompare roughly the last second of their lives with the previous 3
(Strong et al., 1998), and for simplicity. However, the form of the
emory function used by a live bacterium is believed to be more

omplicated (Segall et al., 1986). Even more importantly, the opti-
al form of the memory function in the context of biocomputation

s likely to be (a) different and (b) sensitive to problem or class of
roblems under consideration. Therefore, future work will explore
ifferent memory functions and their performances for different
roblems. A promising avenue is to “evolve” the memory function in
ilico for a particular class of problems. For example, in recent work
e evolved the memory function of a chemotactic bacterium-like

rganism on a computer, in the presence of a Gaussian attractant
istribution, finding that the evolved function resembles the bipha-
ic shape believed to be at work in the chemotactic mechanism
f E. coli. Presumably, when exposed to different functional land-
capes, a “species” of digital organisms equipped with the ability to
volve the memory function will adapt to the function in question,
eveloping an optimal or near-optimal response.

It was mentioned above that in PSO, the swarm converges to the
est solution found to date and that this strategy, while running the
isk of missing the global optimum, means that local searches near
he best solution found are more efficient—because they are carried
ut by more particles. In an attempt to introduce this feature into
ur model by mimicking the natural behaviour of bacteria, one pos-
ible variation on the algorithm presented above would also allow
he agents to divide (produce offspring) when in a favourable region
f the functional landscape. This would maintain the advantage of
ot swarming to a local minimum while increasing the efficiency
f local searches (and, if the agents can also die, reducing the pro-
ortion of computational time dedicated to unpromising regions).
inally, future work will also focus on comparing this method with
ther methods, both of a natural computing flavour and also more
lassical methods such as steepest descent, random search, etc.
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