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Filamentous fungi that colonize microenvironments, such as animal
or plant tissue or soil, must find optimal paths through their habitat,
but the biological basis for negotiating growth in constrained
environments is unknown. We used time-lapse live-cell imaging of
Neurospora crassa in microfluidic environments to show how con-
straining geometries determine the intracellular processes responsi-
ble for fungal growth. We found that, if a hypha made contact with
obstacles at acute angles, the Spitzenkörper (an assembly of vesi-
cles) moved from the center of the apical dome closer to the obsta-
cle, thus functioning as an internal gyroscope, which preserved the
information regarding the initial growth direction. Additionally, the
off-axis trajectory of the Spitzenkörper was tracked bymicrotubules
exhibiting “cutting corner” patterns. By contrast, if a hypha made
contact with an obstacle at near-orthogonal incidence, the direc-
tional memory was lost, due to the temporary collapse of the
Spitzenkörper–microtubule system, followed by the formation
of two “daughter” hyphae growing in opposite directions along
the contour of the obstacle. Finally, a hypha passing a lateral open-
ing in constraining channels continued to grow unperturbed, but a
daughter hypha gradually branched into the opening and formed
its own Spitzenkörper–microtubule system. These observations sug-
gest that the Spitzenkörper–microtubule system is responsible for
efficient space partitioning in microenvironments, but, in its absence
during constraint-induced apical splitting and lateral branching, the
directional memory is lost, and growth is driven solely by the iso-
tropic turgor pressure. These results further our understanding of
fungal growth in microenvironments relevant to environmental, in-
dustrial, and medical applications.
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Filamentous fungi dwell in geometrically, mechanically, and
materially heterogeneous habitats, such as animal or plant

tissue (1, 2), decaying wood, leaf litter, and soil (3, 4). The eco-
logical ubiquity of filamentous fungi stems, to a large extent, from
their remarkable ability to invade, search for nutrients, and thrive
within these microenvironments. Because filaments (hyphae) can
grow for relatively long distances (millimeters) through media
containing no, or low, levels of nutrients, fungal space-searching
strategies need to operate independently of chemotaxis (5, 6).
Extensive studies have described the fundamental growth be-

havior of fungi: For example, hyphal directional growth (7–11),
regular branching (12–14), and negative autotropism (15, 16).
However, these studies have been performed on flat agar sur-
faces, in contrast to the 3D, geometrically constrained habitats
filamentous fungi naturally encounter.
Advanced fluorescence microscopy studies of fungal growth

on nonconstraining open surfaces have revealed several intra-
cellular processes that are essential for hyphal extension and
branching (9, 17, 18). First, the positioning of the Spitzenkörper
at the hyphal apex correlates with the direction of apical growth
and overall cell polarization (19–24). Second, cytoskeleton dy-
namics (involving microtubules, actin, and motor proteins) me-
diate the directional, long-distance transport of secretory vesicles
from the body of the fungus toward the hyphal apex, carrying

materials for building the hyphal cell wall. Whereas microtubule
dynamics in fungal growth have been extensively studied (25–30),
our understanding of the role of actin filaments is less developed
and more recent (31–36). Third, the dynamic process of con-
structing hyphal walls results in an increase in stiffness from the
apex to the base of hyphae (25, 28, 30, 37–40). Finally, concen-
tration gradients of osmolytes (e.g., ions, sugars, and alcohols)
(41) along the hypha and between the hyphal cytoplasm and the
outside environment produce considerable turgor pressure, which
provides a distributed internal driving force for fungal growth that
is manifested primarily at the hyphal tip and which enables the
fungus to penetrate soft obstacles (17, 42–47).
Microfluidics devices, which have been used to study the be-

havior of individual bacterial (48–50), mammalian (51, 52), and
plant cells (53, 54), and recently fungi (55–57), can be designed to
mimic micrometer-sized, naturally constraining habitats. Further-
more, the material of choice for these devices, poly(dimethylsiloxane)
(PDMS) (58), is transparent, allowing visualization by microscopy
(52, 59), and is permeable to O2, allowing in vitro studies in more
realistic conditions.
Using advanced microfluidics technology, our previous studies

(60–62) with the fungi Pycnoporus cinnabarinus and Neurospora
crassa demonstrated differences in behavior in constraining geom-
etries compared with that on flat surfaces; in particular, fungi grown
in a geometrically constrained environment had up to 10 times lower
apical extension rates and distances between branches. Translation
of the fungal space-searching process into a mathematical formalism
(60, 63) revealed that this strategy is analogous to a “master program”
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with two “slave subroutines”: Directional memory, whereby in-
dividual hyphae return to their initial direction of growth after
passing an obstacle that forced them to deviate from their
course; and obstacle-induced branching, whereby branching oc-
curs only if the hypha encounters an obstacle that totally blocks
its growth. “Running” this program results in a significantly
deeper exploration of the available space for growth than other
possible alternatives (60, 61): That is, turning off either di-
rectional memory, obstacle-induced branching, or both subrou-
tines. It was also shown that the fungal space-searching program
can find exits in confining mazes quicker than some mathemat-
ical algorithms (63). However, these empirical studies do not
offer insights into the “hard-wired” intracellular mechanisms
underlying the strategy adopted by fungi for efficient searching
of their constraining environment.
The roles of the Spitzenkörper, microtubules, and turgor

pressure in fungal growth have been studied comprehensively—
but only in nonconstraining environments. As the growth be-
havior of fungi differs considerably between nonconstraining and
constraining environments, our present understanding requires
refinement. To elucidate containment-induced intracellular pro-
cesses in fungi, and particularly their role in directional memory
and obstacle-induced branching, we used time-lapse laser-scanning
confocal microscopy to image the growth of N. crassa and the
dynamics of fluorescently labeled Spitzenkörper and microtubules
in confining microfluidics networks. The results are potentially
relevant to various environmental, industrial, and medical con-
cerns, including fungal pathogenicity.

Results
Fungal Growth on Flat Agar Surfaces and in Closed Nonconstraining
PDMS Geometries. Because the vast majority of reported fungal
growth studies have been performed on open agar surfaces, the
first step in our study was to establish that the “internal” control
in our experiments (that is, using closed, but nonconstraining,
large PDMS-made chambers) provided comparable growth
conditions with those reported in the literature. Therefore, we
performed experiments in closed PDMS microfluidic structures
comprising separate chambers (Fig. 1 and SI Appendix, Fig. S1)
(representative images of fungal growth are presented in SI
Appendix, Fig. S2), as “internal” control, as well as on agar, as
“external” control.
The comparison of fungal growth on agar (our external con-

trol, and published data) and in closed/nonconstraining condi-
tions (our internal control) demonstrates that they elicit similar
growth behavior (Fig. 2, Table 1, and SI Appendix) (comparison
between agar and PDMS in SI Appendix, Table S1 and Fig. S3).
First, the cross-sectional apical profiles of the hyphae were
parabolic and symmetrical (Fig. 2A for internal; and SI Appendix,

Fig. S4 for external control). Second, the Spitzenkörper was
centered at the hyphal apex (SI Appendix, Fig. S5 and Movie S1),
with small periodic oscillations perpendicular to the growth di-
rection (Movie S2). Third, the microtubules were longer and less
aligned with the hyphal axis when further away from the hyphal
apex (Movies S3 and S4). This is seen as a broadening of the
distribution of the deviations of microtubule angles from the
hyphal axis (histograms in Fig. 2B representing n = 852 micro-
tubules in 20 hyphae, for internal control; and SI Appendix, Figs.
S4 and S6 for external control). Furthermore, the lateral distri-
bution of microtubules indicated that, while they populated both
cortical and central cytoplasmic regions (the entire width of the
hypha), their density was higher in the cortical region (Fig. 2C
for internal control; SI Appendix, Fig. S7 for external control) (SI
Appendix, Table S2 and Fig. S8 present a statistical comparison
between the controls). The microtubules extended into the apical
dome, displaying a characteristic microtubule-depleted zone in
the distal central region that colocalized with the Spitzenkörper
(Movie S3). Long-term imaging (5 to 10 min) showed that mi-
crotubules occasionally traversed the Spitzenkörper position and
frequently terminated at the apical cell wall. The estimated mi-
crotubule polymerization rate was 26.4 ± 8.6 μm·s−1 (n = 412
measurements from 98 microtubules). Finally, long-term imaging
showed that this organization along the hyphal axis is interrupted
when microtubules passed a septum (SI Appendix, Fig. S9 and
Movie S5).
The lateral branching behavior (branching at ∼45° with move-

ment of microtubules into the daughter hypha) was also similar on
agar and in closed/nonconstraining PDMS chambers (SI Appendix,
Figs. S10 and S11 andMovie S6). The central positions and sizes of
the Spitzenkörper were also similar (SI Appendix, Figs. S11–S13).
After establishing the experimental equivalence between

the external control on agar and the internal control in large
PDMS chambers, we investigated the effect of geometrical
constrainment on hyphal growth using PDMS structures. The
geometry of the microfluidic network (Fig. 1B) exposed the hy-
phae to a high density of various structural features (60, 61), such
as corners, channels, and entrances and exits from the chambers.
This variety of structural features allowed us to observe the in-
tracellular mechanisms of hyphal growth and branching, grouped
in three categories of events: Collision with obstacles at acute
angles of approach, frontal collision with obstacles, and growth in
tightly constraining geometries.

Fig. 1. (A) Experimental setup for live-cell imaging of fungal growth in
microfluidics structures (not to scale). (B) PDMS microfluidics structures for
confining fungal growth. (Left) Three interconnected chambers, of which
the middle one was used to investigate nonconstrained growth, while the
top and the bottom ones were used to probe lateral branching in con-
straining environments. (Middle) Channels of varying width for probing
lateral branching by level of constraint. (Right) Overall image of the entry to
the chip, probing the response to collisions at acute and near-orthogonal
angles, as well as corner responses.

Fig. 2. Spatial distribution of microtubules in Neurospora crassa GFP in
nonconstraining environments. (A) Single-plane fluorescence image of GFP-
tagged microtubules within a branched hypha. The colors represent the
relative spatial density of microtubules (see color map, arbitrary scale, Right).
The asterisks indicate mitotic spindles, and the solid white arrowhead at the
tip indicates the position of the Spitzenkörper. (B) Histogram of microtubule
(MT) deviation angles from the hyphal polarization axis in the apical and
subapical compartments. (C) Microtubule density profiles, plotted as fluo-
rescence intensities along the vertical lines (1 to 3) drawn across the hypha in
A. The hyphal diameter (∼7 μm) was normalized to offset small variations at
different sections through the apical compartment.
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Collision with Obstacles at Acute Angles of Approach. At acute an-
gles of approach, that is, lower than 35° relative to the fixed
obstacle surface, hyphae closely followed the contour of the
immobile obstacle, a process previously termed “nestling” (60,
61). To establish the underlying intramolecular mechanisms re-
sponsible for nestling, we imaged the growth of the hyphae (n =
26) when colliding with PDMS walls at acute angles. We found
that nestling dynamics (Fig. 3 and Movie S7) present three phases:

1) Before encountering the wall: Similarly to experiments in non-
constraining geometries, the hyphal profile was symmetrical,
with the Spitzenkörper located centrally at the apex and the
microtubules distributed symmetrically. We consistently ob-
served the absence of any anticipatory change in behavior even
before an imminent contact, suggesting the absence of any
sensing mechanism.

2) Nestling: We observed four major changes in hyphal mor-
phology upon encountering a wall. First, the growing hypha
followed the constrained path imposed by the obstacle as it
slid along the wall in the direction of least deviation (Fig. 3A
and SI Appendix, Fig. S14, Top). Second, the longitudinal
hyphal cross-section shape lost its symmetry and became
considerably skewed toward the wall. The hypha continued its
progress in close contact with the wall, maintaining this skewed
tip profile. Third, the Spitzenkörper markedly shifted away
from its previously central apical location, toward the wall. This
displacement persisted over distances at least longer than sev-
eral hyphal diameters (Fig. 3B and SI Appendix, Fig. S14, Bot-
tom). Skewing of the apex during nestling was constant over
time: That is, in nestling events in a sequence of up to 10 cham-
bers. Fourth, microtubules tended to gather near the inside
edge of the hyphal bend (white arrow in Fig. 3A) and toward
the wall at the tip (Fig. 3A and SI Appendix, Fig. S15). The
nestling behavior of the Spitzenkörper (that is, shifting away
from the axis toward the wall opposing the initial direction of
growth) also occurred when a hypha was able to circumnavigate
a small immovable obstacle (SI Appendix, Fig. S16).

3) Return to nonconstrained growth: After overpassing the end
of the wall, within a distance approximately equal to the
hyphal diameter, the hypha quickly recovered its original
growth direction. Additionally, the hypha resumed its sym-
metrical profile; the Spitzenkörper simultaneously returned
to a central position (Fig. 3C and SI Appendix, Fig. S17)
(Movie S7 presents the complete time series); and the mi-
crotubules recovered their symmetrical transversal distribu-
tion. Within the spatial range of observation (spanning
10 chambers, each with a length of 100 μm, and observing
more than 100 events), the accuracy in the recovery of the
direction of hyphal growth did not diminish over time, having
negotiated successive bends through the device, or with in-
creasing distance from the initial branching point of that
hypha (SI Appendix, Fig. S18).

Frontal Collision with Obstacles. Frontal encounters with a wall, at
angles of approach greater than 35° relative to the surface of the
immovable obstacle, caused the apices of the hyphae to split, a
process termed “hit & split.” To establish the underlying intra-
molecular mechanisms responsible for the hit & split process, we
imaged the growth of the hyphae colliding with PDMS walls at
near orthogonal angles (SI Appendix, Fig. S19). Repeated imaging
(n = 37 events) provided evidence for a three-phase intracellular
process (Fig. 4, SI Appendix, Figs. S19–S22, and Movie S8):

1) Polarized approach, before encounter (“Approach” in Fig. 4
A1, B1, and C1): If a hypha approached a wall, similarly to
the prenestling phase, microtubules were oriented longitudi-
nally, terminating at the apical region of the cell (SI Appen-
dix, Fig. S20A).

2) From the moment of encounter to branching (“Collision” in
Fig. 4 A2–A4, B2–B4, and C2–C4) comprised three stages: In
stage 1 (Fig. 4 A2, B2, and C2), the immovable obstacle
blocked the hypha in the direction of growth, causing a small
deformation in the elastic PDMS wall (SI Appendix, Figs. S19C
and S21A). Hyphal growth then continued quasiorthogonally to
the polarization axis, resulting in lateral bulging in the apical
region. Simultaneously, the microtubules depolymerized, and
the filament ends receded rapidly from the apex (Fig. 4C2

Fig. 3. Spitzenkörper and microtubules dynamics in somatic hyphae nest-
ling against a wall. (A) Spitzenkörper (labeled with FM4-64, pseudocolored
red) and microtubules (genetically tagged with GFP, pseudocolored green)
in the apical hyphal region growing along a PDMS wall (dashed line). The
parabolic apex profile is skewed toward the wall. The Spitzenkörper (as-
terisk) is displaced from its usual central position at the apex as growth is
obstructed. The microtubules follow the shortest path toward the Spitzen-
körper (white arrow) and are displaced from the central median of the hy-
pha. (B) Trajectory of the Spitzenkörper along the wall during nestling. The
image is an overlay of five snapshots taken over 4 min. The white and black
arrows indicate the beginning and the end, respectively, of the Spitzenkörper
trajectory. (C) Upon reaching the end of the wall, the hypha recovers its
symmetrical parabolic profile, and the Spitzenkörper gradually returns to
the apical center. The near-orthogonal angle of contact of the hypha with
the horizontal wall is the result of shifting the base by the growth of the
daughter hypha on the left. The image is an overlay of six snapshots taken
over 7.5 min; the white and black arrows indicate the beginning and the
end, respectively, of the Spitzenkörper trajectory. The images in B and C are
from the same hypha at different times, as indicated in the Inset of C. The
complete sequence of images is presented in Movie S7.
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and SI Appendix, Fig. S20B). At 25 ± 13 s after the collision,
the average distance between the obstacle and the microtu-
bule receding end was 7.3 ± 3.7 μm. The Spitzenkörper
shrank gradually but did not retract longitudinally from the
apical dome (Fig. 4A2 and SI Appendix, Fig. S21B). In stage 2
(Fig. 4 A3, B3, and C3), the hyphal profile continued to de-
velop into two bulges. Total dissolution of the Spitzenkörper
occurred toward the end of this stage: That is, 70 ± 40 s after
the initial encounter (Fig. 4A3 and SI Appendix, Fig. S21C).
Importantly, the disappearance of the Spitzenkörper also oc-
curred if the hypha pressed and then penetrated a PDMS wall
(Movie S9). The microtubules resumed their extension toward
the apex, and, after 80 ± 36 s from the collision, their population
appeared to be fully recovered in the hyphae (Fig. 4C3 and SI
Appendix, Fig. S20C). In stage 3, just before branching was ini-
tiated and when the hypha did not have a Spitzenkörper, the
uniform apical extension continued laterally, following the con-
straining geometry. The microtubules again extended to the ex-
treme apical cell walls and migrated from the parent hypha into
the nascent bulges, ultimately resulting in an extension along the
obstacle walls (Fig. 4C4 and SI Appendix, Fig. S20D).

3) Branching (“Formation of daughter branches” in Fig. 4 A5,
B5, and C5): Approximately 2 min after the encounter, the
uniform extension changed to a bidirectional, polarized pat-
tern, with the bulges reaching 2.3 ± 1.3 μm in length. The
sizes of the bulges immediately before forming new branches
correlated moderately (r = 0.65, P < 0.05) with the initial
diameter of the parent hypha. The change in polarization
pattern coincided with the nucleation of two smaller “daugh-
ter” Spitzenkörper structures—one for each new branch (Fig.
4A5) (SI Appendix, Figs. S21D and S22 present the overlap of
Spitzenkörper trajectory during the process of hit & split).
Independent microtubule populations developed within each
branch to conclude the branching process (Fig. 4C5 and SI
Appendix, Fig. S20D).

Additional evidence of the intracellular processes during the
hit & split in more complex geometries is presented in SI Ap-
pendix, Fig. S23, which shows a sequence of images showing the
Spitzenkörper in the process of a hypha colliding with an ob-
stacle, slightly larger than its diameter, which split it into two
branches. SI Appendix, Figs. S24 and S25 and Movie S10 present
the evolution of the microtubules when a hypha collided near
orthogonally with a short obstacle that blocked the formation of
a second branch. In this instance, once the branch is formed, the
microtubules present the characteristic corner-cutting pattern
(SI Appendix, Fig. S25). Finally, Movie S11 presents a similar
lateral branching due to the collision of a hypha with a corner
that does not allow the formation of two branches.

Growth and Branching in Tightly Constraining Geometries. To es-
tablish the underlying intramolecular mechanisms responsible
for growth and branching in tightly constrained geometries, we
imaged the evolution of the hyphae in channels with widths
smaller than their diameter, without and with lateral opening,
and in dead-end corners.
First, when N. crassa progressed in long, linear, tight channels

without lateral exits (n = 14), the hyphae branched immediately
upon cessation of the confinement: For example, at a channel
opening into a larger volume (Movie S12), with both hyphae
generating their own Spitzenkörper soon after exit (SI Appendix,
Fig. S26). Importantly, the behavior manifested during nestling
(that is, preservation of the initial direction of growth by the
Spitzenkörper before entering the tight channel) was also present
(SI Appendix, Fig. S27). Additionally, the microtubules exhibited
the same pattern: That is, pressing against the wall opposite to the
initial direction of growth (SI Appendix, Figs. S27 and S28).
Second, for hyphae growing in channels with lateral exits (n =

25), branching occurred almost immediately when passing this
opening (Fig. 5 and SI Appendix, Fig. S29 for Spitzenkörper; SI
Appendix, Fig. S30 for microtubules; and Movie S13).
The growth and branching into lateral openings proceeded in

three phases (n = 20 hyphae):

1) Entry and apical growth in the channel (“Approach” in Fig. 5
A1, B1, and C1): Upon entering the confining channel (Fig. 5 A1
and B1), the hypha grew along its initial direction, without turn-
ing into lateral channels. Similarly to nestling, the Spitzenkörper
was closer to the walls opposite to the initial direction of growth
(SI Appendix, Fig. S29). The microtubules were oriented lon-
gitudinally within the parent hypha (Fig. 5C1 and SI Appen-
dix, Fig. S30A2).

2) Formation of a proto-branch (“Lateral opening” in Fig. 5
A2–A4, B2–B4, and C2–C4): If the hypha encountered a
lateral opening, the subapical region extended into it, pro-
ducing a bulge (Fig. 5 A2, B2, and C2 and SI Appendix, Fig.
S30A1). The longitudinal orientation of the microtubules in
the parent hypha was conserved (without moving toward the
bulge, even after the hyphal apex passed the lateral opening),
but eventually polarization occurred (Fig. 5C3 and SI Appen-
dix, Fig. S30B), followed by microtubule transfer from the
parent into the developing branch (Fig. 5C4 and SI Appendix,
Fig. S30C). Approximately halfway through this process
(∼70 s) (Fig. 5 A3, B3, and C3), the emerging branch formed
its own Spitzenkörper, and the microtubule populated the
branch (SI Appendix, Fig. S30D).

3) Development of a stand-alone branch (Fig. 5 A5, B5, and
C5): Subsequent development was characterized by the for-
mation of a separate population of microtubules and an in-
dependent daughter hypha (Fig. 5C5 and SI Appendix, Fig. S30
E and F1). Interestingly, features associated with directional
memory appeared early: For example, the ability of microtu-
bules to cut corners (Fig. 5C5). This process occurred within a
few minutes of the initial crossing by the parent apex.

Fig. 4. Phases during frontal obstacle-induced nestling branching following
collision with a PDMS wall (white dashed lines). Columns A and C show
fluorescence images of the labeled Spitzenkörper (red) and microtubules
(green), respectively, and column B shows differential interference contrast
images of a hypha. The hypha deforms the elastic PDMS slightly from
its original position (B3 and B4). During the approach (A1 and A2), the
Spitzenkörper is located at the apical center, and the microtubules organize
longitudinally (C1 and C2). Following the encounter, the Spitzenkörper
shrinks (A2) and ultimately disappears (A3), and the microtubules tempo-
rarily recede from the apical region (C3 and C4). Concomitantly, the apex
grows uniformly (B3 and B4). Finally, two new Spitzenkörper structures form
in the daughter branches (A5), and the microtubules resume their extension
toward both apices (C5).
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Aside from observing the mechanisms involved in branching,
the visualization of hyphae growing in tightly constraining
channels offered additional evidence regarding the structuring of
the microtubule cytoskeleton following changes of the direction
of growth, now obligated by the meandering geometries. Simi-
larly to nestling, the pattern of microtubules preferentially dis-
tributed toward the wall opposing the direction of growth
(“cutting corners” patterns) was also observed when hyphae
navigated meandering channels with widths of 5 μm (Fig. 6, SI
Appendix, Figs. S31 and S32, and Movies S14 and S15), despite
the necessity of passing through centrally located septa (SI Ap-
pendix, Fig. S33).

Discussion
Studies describing the intracellular processes involved in fungal
hyphal extension and branching predominantly used flat, non-
constraining agar surfaces. Advanced microscopy dictates the use
of transparent substrates on which the hyphae grow. However,
these experimental frameworks (that is, flat surfaces and transparent
media) are dissimilar to the natural habitats of filamentous
fungi, environments that comprise constraining geometries,
which are expected to interfere with the mechanisms of fungal
growth being studied. Our previous studies on the growth of the
filamentous fungi P. cinnabarinus (60) and N. crassa (61, 62) in
PDMS microfluidic structures identified two efficient space-
searching strategies—directional memory and obstacle-induced
branching. Summarizing the results of the fluorescence live im-
aging of the growth of N. crassa in microfluidic networks, pre-
sented above, when a hypha was deflected by an immovable
obstacle, the Spitzenkörper shifted from its central position in the
hyphal apex toward the obstacle opposing the growth and
returned to its central position when the mechanical constraint
ceased. In these instances, the microtubules followed the trajectory
of the Spitzenkörper, resulting in cutting corners patterns. Finally,

when the immovable obstacle could not be circumnavigated, the
Spitzenkörper–microtubules system in the parent hypha disinte-
grated, followed by branching which allowed the growth to pro-
ceed, and concluded with the creation of independent Spitzenkörper–
microtubules systems in the daughter hyphae.

Intracellular Mechanisms of Growth in Nonconstraining PSMS-Made
Environments. We observed that the behavior of N. crassa in
nonconstraining PDMS-made environments was similar to that
on agar, both observed by us and as reported in the literature.
First, in our experiments, the hyphal profile was parabolic and
symmetrical (Fig. 2A and SI Appendix, Fig. S4), as also previously
demonstrated and comprehensively described mathematically
(64–66). Second, the Spitzenkörper was located centrally at the
hyphal apex (SI Appendix, Fig. S5 and Movie S1) as described in
early classical studies (67). Also, the observed oscillations or-
thogonal to the growth direction (Movie S2) were consistent with
a previous report (8). Third, the microtubules were generally
orientated parallel to the longitudinal hyphal axis (Fig. 2A and SI
Appendix, Figs. S6–S8 and Table S2), and their accumulation
toward the apical region correlates well with previous observa-
tions (25, 27, 28). The observed microtubule polymerization rate
(26.4 ± 8.6 μm·s−1) was consistent with previously reported re-
sults obtained for hyphal growth on agar (25).
In conclusion, a high degree of similarity exists between the

growth behavior and relevant intracellular processes in closed/
nonconstraining PSMS-made microfluidic chambers, and those
observed during experiments made on agar, as reported here and
in the literature. Therefore, the experiments in large microfluidic

Fig. 5. Phases of hyphal branching into a lateral channel (white dashed
lines). Columns A and C show fluorescence images of the labeled Spitzenkörper
(red) and microtubules (green), and column B shows differential interference
contrast images of a hypha. The parent branch preserves its Spitzenkörper
throughout. Upon entering the channel (A1, B1, and C1), the Spitzenkörper
preserves the initial growth direction (Top Left in A1), being positioned
along the wall. The parent hypha in images (C1 and C2) passes the in-
tersection while the daughter branch forms orthogonally. Whereas the cell
wall partially follows the lateral gap (A2, B2, and C2), the formation of
the daughter hyphae is delayed by the formation of the Spitzenkörper–
microtubule system. Eventually, the daughter hypha forms its Spitzenkörper
and microtubule population approximately simultaneously (A3, B3, and C3).
Microtubules are initially distributed longitudinally in the parent hypha and
do not extend into the bulge. Between frames C3 and C4, the microtubules
start to extend from the parent hypha into the bulge, indicating the for-
mation of the daughter hypha. The development of this branch is completed
by the formation of an independent microtubule population (C5).

Fig. 6. Spatial distribution of microtubules in Neurospora crassa GFP in
constraining meandered channels. (A) Single-plane fluorescence image of
GFP-tagged microtubules. The microtubule alignment largely follows the
initial direction of growth at the entry into the constraining channel. The
colors represent the relative spatial density of microtubules (see color map,
Right). (B) Microtubule density profiles, plotted as the fluorescence in-
tensities along the vertical lines (1 to 3) drawn across the hyphal cross-
section in A.
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chambers are valid benchmarks for assessing the impact of
constraint on fungal growth.

Intracellular Mechanisms Responsible for Directional Memory During
Nestling. In general, the extension of a hypha over a flat surface
followed a direction determined at the initial branching point,
usually at an angle of ∼45° from the parent hypha. We have
previously shown (60, 61) that, in constraining geometries, the
growth is forced to change direction due to an immovable ob-
stacle, but, once the hyphae circumnavigate it, they recover their
initial direction of growth to within an ∼20° error. This directional
memory persists even over distances greater than 10 times the
hyphal diameter, regardless of the number of encountered colli-
sions. Interestingly, the directional memory has been demon-
strated in both P. cinnabarinus (60) and N. crassa (61), but not in a
cytoskeleton-defective N. crassa ro-1 mutant (61). This observa-
tion suggests that the cytoskeleton plays a key role in maintaining
directional memory in constraining geometries.
Our results in nonconstraining environments (presented here,

both on agar and in large PDMS chambers lacking internal ob-
stacles) confirmed previous observations that hyphal growth
follows the positions adopted by the Spitzenkörper (8). However,
although this observation remains valid if hyphae circumnavigate
immobile obstacles by nestling, it requires important qualifica-
tion. Indeed, if a hypha slid past an immovable barrier at an
acute angle of contact, the Spitzenkörper functioned like a gy-
roscope, maintaining the growth direction that the hypha had
before the encounter (Fig. 3, SI Appendix, Fig. S14, and Movie
S7). One possible explanation for this hitherto unknown phe-
nomenon is that the pressure applied to the hyphal wall due to
the mechanical contact with the obstacle results in an intracel-
lular signal that triggers consolidation of the hyphal wall at the
zone of contact. This process would require the off-axis posi-
tioning of the Spitzenkörper and pressure on the contact point
between the hyphal wall and the obstacle (as confirmed by ad-
ditional experiments, in different settings) (SI Appendix, Figs.
S16, S17, S27, and S29). Furthermore, the off-axis position of the
Spitzenkörper creates a skewed microtubule cytoskeleton, which
leads to the characteristic pattern of “cutting corners” (Fig. 3A)—
especially when the directional memory causes hyphae to ne-
gotiate corners in various geometries (SI Appendix, Figs. S15,
S24, S25, S27, S28, S31, and S32 and Movies S12 and S13). This
effect is even more remarkable when considering that the mi-
crotubules must pass through narrow septa, which are centrally
located on the median line of the hypha (SI Appendix, Figs.
S9 and S33 and Movie S5) (68, 69). The functional synergy be-
tween the gyroscope-like Spitzenkörper and the subsequent pref-
erential positioning of the microtubules along a line approximating
the initial direction of hyphal growth appears to constitute the
underlying intracellular mechanism for directional memory, which
was observed for distances at least one magnitude longer than hy-
phal diameters (the hyphal trajectories in Movie S7 are longer than
100 μm; and the distances in SI Appendix, Fig. S18 are several
hundred micrometers).
More detailed experiments regarding the role of F-actin

structures—actin rings, patches, and cables (33)—which are
more difficult to visualize than microtubules (33, 34), might re-
veal their potential role in directional memory. However, be-
cause actin cables are colocalized near the Spitzenkörper and
behind actin rings, it is expected that the role of actin is limited,
at least in relation to the long range of directional memory.

Intracellular Mechanisms Involved in Obstacle-Induced Branching
During Hit & Split. Our previous experiments with N. crassa (61)
showed that containment in various microfluidic structures, com-
prising channels with widths similar in size with hyphal diameters,
results in a shortened distance between hyphal branching points by
a factor of 5 to 10 (the growth rate also decreases 10-fold). We
also observed (61) that, immediately after the contact between a
hypha and a constraining structure at a near-orthogonal angle,
branching occurs at the apex of the hypha. This hit & split

branching contrasts the behavior presented by P. cinnabarinus (60),
which branches at a considerable distance behind the hyphal apex.
Similarities and differences between the Spitzenkörper dynamics in
collision-triggered hit & split and collision-independent apical branching.
The intracellular mechanisms responsible for the collision-induced
behavior mentioned above, as revealed by our experiments, present
some similarities with the processes previously shown to take place
during collision-free apical branching of N. crassa on agar (27, 70).
For instance, both the disappearance of the parent Spitzenkörper
that we observed after microtubule contraction from the apex re-
gion and the nucleation of the two daughter Spitzenkörper centers
were also observed in the apical branching ofN. crassa on agar (70).
More specifically, in internally triggered apical branching on agar,
the Spitzenkörper retracts 12 s after cytoplasmic contraction from
the apex which precedes the branching and disappears after an-
other 47 s; later, 45 s after the start of isotropic, uniform, and slower
growth of the parental and daughter hyphae, one Spitzenkörper
nucleates, followed by a second ∼7 s later, leading to the estab-
lishment of two new branches (70). By comparison, in our ob-
servations of hit & split branching (Fig. 4 and SI Appendix, Figs.
S21 and S22), the Spitzenkörper was not visible until 50 s after
hitting the obstacle. Moreover, the decrease we observed in
Spitzenkörper size, its subsequent disappearance, and the as-
sembly of two new daughter Spitzenkörper centers away from
the parent represent a typical sequence of events that also occurs
naturally in apically branching fungi: For example, Sclerotinia
sclerotiorum (21).
Conversely, our experiments regarding the intracellular mech-

anisms responsible for the collision-induced behavior also show
important differences with respect to the processes during
collision-free apical branching of N. crassa on agar (70). First, on
homogeneous agar substrates, the branching of N. crassa hyphae
occurs predominantly laterally, not apically (70). In contrast, in hit
& split branching in constraining environments, we observed that
apical branching was the prevalent process. Second, in the absence
of a Spitzenkörper, the apical extension stalls in S. sclerotiorum
(21) and is notably reduced in N. crassa branching apically on agar
(70). In contrast, this delay in apical extension was not observed in
our experiments with N. crassa colliding frontally with a wall. We
attribute this difference between hit & split branching and the
apical branching in nonconstraining environments to different
trigger mechanisms. For example, an apical split can occur on agar
a few minutes after the induction of an intracellular process free of
external stimuli, whereas the immediate response of N. crassa
following a frontal collision with an obstacle, as observed in the
present study, can be the result of a highly localized in time and
space contact-induced signal.
Similarities and differences between microtubule dynamics in collision-
triggered hit & split and collision-independent apical and lateral
branching. The behaviors of the microtubules in apical and lat-
eral branching on agar are similar (27), but we found that they
are markedly different during the hit & split response. In un-
constrained apical or lateral branching on agar, the microtubule
population is relatively unchanged throughout the branching
process whereas a hit & split response appeared to trigger the
depolymerization of the microtubules (Fig. 4C2 and SI Appendix,
Figs. S20 and S21). Furthermore, if a hypha encountered a
corner (Movie S11), the resulting budding branch was not ini-
tially populated with microtubules, suggesting that the associa-
tion of microtubules with the apical cell wall is not a prerequisite
for selecting a branching site, as has been observed for lateral
branching in nonconstraining environments (27), but which
could be alternatively explained by cell wall deformation driven
by isotropic turgor pressure.
The role of actin in hit & split branching, as with nestling, is

yet to be established. However, as it was shown for two species of
yeast (71) and for N. crassa (72), actin is not present at the tip of
invasive hyphae: That is, those pressing against agar in condi-
tions similar to our experiments (Movies S8, S9, and S11).
Consequently, it is reasonable to assume that the contribution of
actin to hit & split branching is minimal.
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Overlap of Intracellular Mechanisms of Directional Memory and
Obstacle-Induced Branching During Lateral Branching. We found
that the lateral branching that occurs in tightly constraining
microfluidic channels was only partly similar to lateral branching
in nonconstraining conditions. At the beginning of lateral
branching in nonconstraining geometries, we observed the as-
sociation of cortical microtubules with the cell wall at the loca-
tion of the developing lateral branch. Upon further extension,
the microtubules gathered and bent considerably. The severed
ends of microtubules then migrated into the branch and resumed
polymerization. These observations are consistent with other
studies of lateral branching on flat agar surfaces (27). Impor-
tantly, though, in our tightly constraining channels, the original
Spitzenkörper remained intact in the parent hypha during lateral
branching, and a new Spitzenkörper appeared independently
within the daughter branch. This has also been observed in lat-
eral branching in nonconstraining conditions (70).
The most obvious difference between lateral branching in

tightly constrained geometries and that on flat surfaces was in
the place and frequency of branching. These appeared to be
dictated by the availability of lateral space, rather than triggered
by internal processes, as appears to be the case in non-
constraining conditions. Moreover, in tight channels, there was a
close temporal correlation between the presence of the con-
straining geometry and the lateral branching, enforced by the
axis of the available space (e.g., orthogonal in Fig. 6; also SI
Appendix, Figs. S29 and S30). Also N. crassa branched typically
and almost immediately after an exit from a bottleneck (Movie
S12) (61). These observations suggest that the isotropic turgor
pressure is essential for initiating lateral branching events in
tightly constrained environments.
Finally, the branching we observed in constraining environ-

ments differed from that on open, flat agar surfaces, involving
the same genetically tagged N. crassa strain (25). In our study, no
cortical microtubules were observed to bend or shatter. Cell wall
deformation preceded microtubule extension from the parent
hypha into the nascent bud, making it appear the dominant event
in the chain leading to branch formation. The bulging of the cell
wall into an intersection of channels also preceded the formation
of a daughter Spitzenkörper (SI Appendix, Fig. S23), suggesting
that the nucleation of the Spitzenkörper occurs after the initiation
of branching, as opposed to lateral branching on open surfaces (25).
Lateral branching in tightly constraining channels appears to

be the result of coupling of the Spitzenkörper–microtubules-
controlled directional memory for the growth of the parental
hypha, simultaneously with turgor pressure-controlled obstacle-
induced branching of the daughter hypha.

Intracellular Mechanisms of Directional Memory and Obstacle-
Induced Branching. By using time-lapse confocal fluorescence
microscopy to observe growth of N. crassa in constraining micro-
fluidic environments, we revealed substantial differences in the
intracellular processes involved in the fungal search for space for
hyphal growth, compared with those manifested in nonconstraining
conditions. These differences are presented in Table 1.
Our study shows that the intracellular processes involved in

the growth of N. crassa in constraining geometries are triggered
and modulated by the type of obstacles encountered by hyphae.
Of the two important behavioral traits of N. crassa in growth-
constraining environments (61), directional memory appears to
arise from the Spitzenkörper “remembering” the initial direction
of growth, pressing against opposing obstacles encountered at an
acute angle of attack, and then returning to the initial direction
when the blocking obstacle is left behind and contact with the
hypha ceases. This gyroscope-like dynamic memory is further
stabilized by the structuring of the microtubules in the wake of
the trajectory of the Spitzenkörper, resulting in the characteristic
corner-cutting feature of the microtubule cytoskeleton in
meandering channels. Directional memory, described as a be-
havioral trait of some fungal species (60, 61), may provide bi-
ological advantages for filamentous fungi growing and foraging

in geometrically heterogeneous environments. Indeed, stochastic
simulations showed that suppressing directional memory in P.
cinnabarinus (60) increases the probability of hyphae being
trapped in a network. Furthermore, an N. crassa ro-1 mutant that
did not display directional memory presented a considerably
lower capacity for exiting complex geometries than the wild-type
N. crassa (61).
In contrast to the intracellular processes involved in di-

rectional memory, the Spitzenkörper–microtubules system does
not appear to determine the direction of obstacle-induced
branching. Indeed, in hit & split events, both the Spitzenkörper
and microtubules are absent at the critical point of apical splitting.
The obstacle-induced branching observed in species exhibiting
directional memory (60–62) suggests that this behavioral trait also
affords biological advantages. Indeed, stochastic simulations (60)
have demonstrated that obstacle-induced branching leads to a
higher capacity for exiting complex networks, but with a lesser
benefit than directional memory. Consequently, it appears that N.
crassa has evolved intracellular processes responsible for di-
rectional memory and obstacle-induced branching, with the
former being the main driver for the negotiation of complex
networks, and the latter a fallback mechanism when directional
memory is turned off during near-orthogonal collisions, or when it
cannot operate due to the constraints imposed by tight geometries.

Perspectives and Further Work. Aside from revealing fundamental
intracellular mechanisms involved in fungal growth, this study
may have further impact, or suggest further research, as follows:

� Our PDMS microfluidic devices, in conjunction with advanced
microscopy imaging, could be used in fundamental microbiol-
ogy studies to trigger spatiotemporally precise biomolecular
events which are modulated by the cellular interaction with
the solid environment—for example, to investigate other ele-
ments controlling the fungal growth in confined spaces. Two
aspects appear to ask for special attention: The mechanisms
responsible for the dissolution of the Spitzenkörper and the as-
sociated depolymerization of microtubules in the initial stages of
hit & split; and the role of actin structures in the hyphal growth in
constrained geometries, in particular when the Spitzenkörper/
microtubule system is not present or observable.

� Our devices could be designed more closely to mimic fungal
environments, to bring about environmental, industrial, and
medical applications, including fungal pathogenicity, which is
controlled by the successful negotiation of meandering geom-
etries made of multicellular constructs in animals and plants.
For instance, the mechanical strength of PDMS could be ad-
justed to allow the estimation of the forces applied by fungi in
various environments, by the measurement of resultant defor-
mations, as already demonstrated (73, 74). Alternatively, the
design of the PDMS structures could mimic the structure of
the walls of plant or animal tissue in studies on fungal invasion.

� The confinement imposed on the growth of filamentous fungi
could be applicable to biologically driven computation. For
instance, it was shown (62) that a genetically engineered,
cytoskeleton-defective mutant of N. crassa that produces short
branches preferentially at 90° can solve orthogonal mazes bet-
ter than the wild-type strain, which overwhelmingly branch at
45°. Furthermore, as the natural space-searching strategies
used by fungi have been demonstrated to be more efficient
than some artificial algorithms (63), it is possible to use either
wild-type or genetically engineered fungi to attempt solving
complex physical networks encoding combinatorial mathemat-
ical problems, as proposed (75), and recently demonstrated
(76). Alternatively, the nuclear dynamics in N. crassa (77)
could be “streamlined” in networks mimicking real, complex,
transportation webs, thus allowing studies on traffic optimization
(77–79). A conceptual framework for doing so has been demon-
strated for Physarum polycephalum (80).
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Conclusions
Our study of the response of N. crassa growth to the geometrical
constraints imposed by a PDMS-based microfluidic structure has
revealed how the Spitzenkörper–microtubule system is closely
linked to directional memory when hyphae encounter obstacles
at acute angles of contact. Conversely, if the hyphae collide near-
orthogonally with fixed obstacles that block their growth, the
temporary absence of the Spitzenkörper–microtubule system
results in the loss of directional memory, and growth continues
due to ever-present isotropic turgor pressure. Finally, if free
space becomes available laterally from tightly constraining chan-

nels, the directional memory cannot operate, again leaving turgor
pressure responsible for hyphal lateral branching.
These findings can accelerate further studies on the intracel-

lular processes driving fungal growth in confined environments
and may have impact on a range of environmental, industrial,
and medical applications, from fungal pathogenicity in plants and
animals to biologically driven computation.

Methods
Microfabrication and Experimental Setup. The microfluidic network (Fig. 1 and
SI Appendix, Fig. S1) presents various levels of containment to fungal

Table 1. Comparison of intracellular processes involved in the growth and branching of N. crassa in open and constraining
environments

Growth Hypha Spitzenkörper Microtubules

Nonconstraining geometries
Single hypha Profile: Parabolic, laterally

symmetrical
Location and dynamics: Central, at the

hyphal apex; permanently present
Orientation: Parallel to axis
Distribution: Axially symmetrical
Dynamics: Population relatively constant

Source: Agar (65–67)* and CNC* Source: Agar (68)* and CNC* Source: Agar (43–45)* and CNC*

Lateral
branching

Occurrence: Statistically regular
Angle: ∼45°
Profiles: Parabolic for parental,

daughter hyphae
Apical extension: Reduced during

branching

Location and dynamics: Central, at
the hyphal apices; permanently
present in parental hypha; early
appearance in the daughter hypha

Orientation: Parallel to hyphal axes
Distribution: Axially symmetrical
Dynamics: Population relatively constant

Source: Agar (21)* and CNC* Source: Agar (21) and CNC* Source: Agar (21) and CNC*

Apical branching Occurrence: Regular, but rare
Angle: V-shaped, ∼45°
Profiles: Initial round-up for the

twin hyphae
Apical extension: Reduced during

branching

Location and dynamics: It retracts
from the apex and disappears; then,
two Spitzenkörper centers emerge
at the centers of hyphal apices

Orientation: Parallel to hyphal axes
Distribution: Axially symmetrical
Dynamics: Population relatively constant

Source: Agar (21) Source: Agar (21) Source: Agar (44, 74)

Constraining geometries
Nestling Occurrence: Triggered by contact

at acute angles
Angle: Change of direction as

dictated by the wall
Profiles: Skewed off-axis, toward

the wall
Apical extension: Unchanged

Location and dynamics: Off-axis
location, pressing against the
obstacle; return to central position
after passing the obstacle

Orientation: Aligned off-axis
Distribution: Axially asymmetrical,

“cutting corners”
Dynamics: Population relatively constant

Hit & split Occurrence: Triggered by near-
orthogonal collisions

Angle: T-shaped, at ∼180°
Profiles: Triangular; then,

progressively parabolic
Apical extension: Constant during

splitting

Location and dynamics: It disappears
during splitting of parental hypha;
then, two Spitzenkörper centers
form centrally at the apex of twin
branches

Orientation: Random close to the
splitting

Distribution: Random close to the
splitting

Dynamics: Substantial dissolution; then,
formation in twin hyphae

Branching in/
after tightly
constraining
channels

Occurrence: Triggered by free
space for branching

Angle: Dictated by geometry
Profiles: Parabolic for parental

hypha; circular, then
increasingly parabolic for
daughter hypha

Apical extension: Constant during
branching

Location and dynamics: Parental
Spitzenkörper progresses
unchanged; the daughter hypha
forms its own Spitzenkörper early
and centrally

Orientation: Parallel to the hyphal axes
Distribution: Axially symmetrical
Dynamics: Populations relatively constant

CNC, confined, but nonconstraining.
*Present study.
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growth, from tight-constraining in channels with widths smaller than the
hyphal diameter (5 to 7 μm) to confined, but nonconstraining chambers
(100 × 100 × 10 μm). The design of the microfluidic network allowed the
investigation of fungal behavior as influenced by various levels of confine-
ment and constraint (detailed in SI Appendix, Fig. S34).

Fungal Species, Growth Media, and Staining. N. crassa was selected as the
model organism because we could benchmark our results regarding growth
and branching in microenvironments with a large body knowledge related
to open spaces and because many mutants are available for experimental
studies. Neurospora crassa rid (RIP4) mat a his-3+::Pccg-1-Bml+sgfp+ mutant
strain (henceforth “Neurospora crassa GFP”) [Fungal Genetics Stock Center
(FGSC) no. 9519] was used for the study. The high level of nutrients was
necessary to ensure the canceling of the (possible) chemotaxis-driven growth
directionality. The FM4-64 dye (Invitrogen Ltd.) was used as a marker
for Spitzenkörper.

Time-Lapse Microscopy and Image Analysis. Live-cell imaging used an inverted
laser-scanning microscope (Zeiss Axio Observer Z1 with LSM 5 Exciter RGB,
Carl Zeiss) with photomultiplier detectors. Fluorescence and bright-field time-
lapse images were captured simultaneously and analyzed using image pro-
cessing software (Zen 2008, Carl Zeiss).

Growth Experiments on Agar and Microfluidic Structures. Control measure-
ments for fungal growth in nonconstraining environments were performed
on 1% wt/vol malt extract media using somatic hyphae at the edges of the
colony. Hyphal growth rates were measured by tracking the position of the
extreme hyphal apices in subsequent frames. Fungal growthwas recorded for

the period needed to observe hyphal behavior from the entry in, to the exit
from, the microfluidic network of interest, which require ∼20 min for a
straight 100-μm channel. Due to the more convoluted geometries and the
presence of multiple hyphae, in many instances, the image recording lasted
more than 1 h. To measure the rates of microtubule polymerization within
the apical compartment and to distinguish this from motility, the positions
of individual filament ends were tracked frame-by-frame, following a
methodology reported previously (25).

Statistical Analysis. Statistica 7.1 (Statsoft Inc.) and GraphPad Prism 6.01
(GraphPad Software Inc.) were used for statistical analysis and correlation
tests. Statistical analyses included calculating the mean and SD values of
parameters measured: i.e., position, alignment with the hyphal axis, polymeri-
zation rate for microtubules, times before reappearance of the Spitzenkörper,
and hyphal bulge dimensions, over the total number n data points, reported for
each instance. Statistical analyses included all accumulated data from at least
20 separate experiments (unless otherwise stated).

A full account of the methods is presented in SI Appendix.
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Figure S1. Top panel: 

top view of the overall 

experimental setup 

(optical imaging system 

not shown). Bottom 

panel: side view of the 

experimental 

implementation for 

fluorescence studies 

(not to scale). Top: 

Normal implementation 

requirements. Bottom: 

Experimental assembly 

used in this study. 

 

 

 

Figure S2. Neurospora 

crassa exploring in 

parallel a series of 100 

μm-wide chambers. The 

black arrow indicates 

the direction the 

exploration of the set of 

networks. The overall 

trajectories of the 

exploring hyphae 

present with a trend 

from left to right, which 

is induced by the layout 

of the individual 

microfluidic networks 

and connecting 

chambers. 
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1.1.2. Calculations for the design and operation of microfluidics chambers 

 

Oxygen diffusivity. The diffusion coefficient of molecular oxygen in water can be estimated 

using the Stokes-Einstein equation. Assuming that water and oxygen molecules are ideally 

spherical and that the channel is filled arbitrarily slowly, the diffusion coefficient D of oxygen 

in water is  

𝐷 =
𝑘𝐵𝑇

6𝜋𝜂𝑅0
      Eq. 1 

where kB is the Boltzmann constant, T is the absolute temperature, η is the dynamic viscosity 

of the solvent, and R0 is the hydrodynamic radius of the diffusing particles. R0 is the effective 

radius of the particle that experiences resistance from the viscous solution: 

𝑅0−𝑂𝑥𝑦𝑔𝑒𝑛 = 1.21 ∙ 10−10𝑚    Eq. 2 

The temperature T = 296.15 K used in the calculation corresponds to the average room 

temperature of 21°C measured over the duration of the experiments. The dynamic (or 

absolute) viscosity of water depends on T according to Arrhenius-Andrade equation 

𝜂 = 𝜂0 ∙ 𝑒
𝐸𝐴
𝑅𝑇      Eq. 3 

where η0 is the material viscosity under standard conditions, EA is an activation (or 

transposition) energy, and R is the absolute gas constant. Adams et al. (1) measured the T-

dependence over the range 274 K < T < 373 K, yielding a simplified empirical formulation 

𝜂 = 𝐴 ∙ 10
𝐵

𝑇−𝐶      Eq. 4 

with empirical constants A = 2.414∙10
-5 

kg∙m
-1

∙s
-1

, B = 247.8 K, and C = 140.0 K. Therefore, 

the viscosity of water at average room temperature during the experiments (23°C) is 

𝜂296.15 = 9.33 ∙ 10−4𝑃𝑎 ∙ 𝑠    Eq. 5 

Using this viscosity, the diffusion constant of an oxygen molecule in aqueous solution is 

𝐷 = 1.92 ∙ 10−9 𝑚2

𝑠
     Eq. 6 

This value is less than 3.4∙10
-9

 m
2
/s, reported in PDMS (2), which is permeable to both 

oxygen and carbon dioxide. 

 

Diffusivity of nutrients. By modelling maltose and oxygen molecules as ideally spherical 

molecules, and assuming that the channel is filled arbitrarily slowly, the diffusion of oxygen 

in water can be described using the Stokes-Einstein equation. Substituting a hydrodynamic 

radius for maltose of R0-Maltose = 5 Å (3) in Eq. 1., and assuming the previously quoted values 

for the other constants, yields the diffusion constant 

𝐷𝑀𝑎𝑙𝑡𝑜𝑠𝑒 = 4.65 ∙ 10−10
𝑚2

𝑠
 

This value is approximately four times smaller than that for oxygen (~ 2  10
-9

 m
2
/s). The 

time needed for the maltose to diffuse a distance x ~ 100 µm (the length between the test 

structure, e.g., diamond, and larger volumes of nutrients, e.g., opening or 100 µm x 100 µm 

‘plazas’) can thus be calculated as 

𝑡 =
〈𝑥2〉

2 ∙ 𝐷𝑀𝑎𝑙𝑡𝑜𝑠𝑒
=

1002 ∙ 10−12 𝑚2

2 ∙ 4.651 ∙ 10−10 𝑚2

𝑠

= 10.75 𝑠 

This time is three orders of magnitude shorter than the time taken by a typical apical 

extension of Neurospora crassa to traverse the test structure, assuming an average extension 

velocity of ~ 0.006 µm/s. In conclusion, the microfluidics structures provide rapid and high 

level of nutrients, thus not impacting on fungal growth. 
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Table S1. Relevant parameters for the operation of fungal confinement chips 

Medium Diffusivity of O2 (m
2
/s) Diffusivity of sugars (m

2
/s) 

Air  1.8∙10
-5 

- 

Water  1.9∙10
-9

 4.7∙10
-10 

 for maltose, cf. above 

Agar 2.4∙10
-9

, 2% agar (4) 2.9∙10
-10

 for sucrose (5) 

PDMS 3.4∙10
-9

 (2) - 

 

1.1.3. Penetration depth of Neurospora crassa hyphae into an agar plate 

The fungal growth on flat agar surfaces benefits from unencumbered access to oxygen. In 

contrast, the oxygen needs to diffuse through PDMS to the hyphae growing in closed, but 

non-constraining environments, or through the aqueous solutions in the microfluidics 

channels. It appears however that the lower oxygen content in closed but non-confining 

PDMS structures, compared with the open agar surfaces, does not affect hyphal growth. 

Indeed, the following images show vertical cross-sections of an agar plate, onto which a 

fungal colony has been inoculated. Fungal growth then occurs on, or at a shallow depth below 

the surface, but there is also some deeper penetration, beyond the accessible range of a 

confocal microscope. 

Figure S3. Micrographs of the hyphal vertical penetration in agar material. Sections away 

from the edge of the agar plug: top: at the edge (penetration depth of the bulk of hyphae ~80 

μm); middle: 0.5 cm from the edge (penetration depth ~670 μm); and bottom: 1 cm from the 

edge (penetration depth ~approximately 2260 μm). In the middle of the agar plate, the fungus 

penetrates the entire depth of the agar plate, i.e., more than 2 mm. The scale bar = 500 μm. 

 

1.1.4. Equivalence between conditions of growth on agar and in control PDMS chambers 

The environments presented to hyphae by agar surfaces and PDMS structures are not 

geometrically similar, raising the possibility of differences in fungal growth. First, the hyphae 

growing on agar are not physically constrained, as they could even penetrate it for more than 

2 mm. However, the PDMS structures used to study the intracellular mechanisms in quasi-
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open conditions consist of chambers with widths of 100 µm and heights of 10 µm, which 

exceeds the diameters of a typical Neurospora crassa hypha, i.e., 4-7 µm, consequently 

excluding physical constraining. Second, on agar the hyphae are directly exposed to air, but in 

experiments in closed/non-confining environments, the oxygen reaches the hyphae through 

diffusion through microns-to-millimetres thick PDMS material. Although the diffusivity of 

oxygen in air (1.8∙10
-5

 m
2 

s
-1

) is approximately four order of magnitude higher than in PDMS 

(3.4∙10
-9

 m
2 

s
-1

 (6)), the capacity of hyphae to penetrate agar, which has a lower diffusivity of 

oxygen (2.4∙10
-9

 m
2 

s
-1

) than PDMS, suggests that oxygen is present at levels not impacting 

fungal growth. Third, the diffusivity of sugars in water (the carrier of nutrients for in 

closed/non-confining PDMS structures) is estimated at 4.7∙10
-9

 m
2 

s
-1

, which is more than an 

order of magnitude higher than for agar, i.e., 2.9∙10
-10

 m
2 

s
-1

, which suggests that nutrient 

levels will not negatively affect fungal growth.  

 

1.1.5. Intracellular mechanisms for Neurospora crassa growth on external and internal 

control  

Hyphal growth behaviour and related intracellular processes in PDMS non-constraining 

environments are similar with those observed on agar (Supplementary Figure S2). First, the 

cross-sectional apical profiles of Neurospora crassa hyphae are parabolic and symmetrical 

(Figure 2a for internal control; Supplementary Figure S4 for external control). Second, the 

Spitzenkörper is centred at the hyphal apex (Supplementary Movie S1, and Supplementary 

Figure S5), with small periodic oscillations orthogonal to the direction of growth 

(Supplementary Movie S2). Third, the microtubules are predominantly orientated parallel to 

the longitudinal hyphal axis (Figure 2a for internal control; Supplementary Figures S4 and S6 

for external control). For instance, in the apical regions, a majority of microtubules (53%) 

deviate by less than 10° from the polarisation axis, and 84% deviate by less than 20°, with an 

overall mean deviation angle of 11.7° ± 9.5° (n = 453 microtubules measured in 20 hyphae, 

Figure 2b, Supplementary Movie S3). By contrast, in subapical compartments the angular 

deviations of microtubules are larger, i.e., 21% microtubules presenting a deviation of less 

than 10°, and 46% less than 20°, with an overall mean deviation angle of 26.8 ± 20.1° (n = 

852 microtubules measured in 20 hyphae; Figure 2b and Supplementary Movie S4). 

Figure S4. Hypha profile and distribution of the microtubules (fluorescently tagged) within 

growing hypha. Top: First and last frame and overlay of an image series of the fluorescence 

signal of Neurospora crassa GFP on agar. The spatial distribution of the microtubules 

(presented further in Figure S7) is quantified in the indicated rectangle.  
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Figure S5. FM4-64 intensity profile and Spitzenkörper trajectory in the apical compartment 

of Neurospora crassa GFP on agar. Left: Apical compartment of a Neurospora crassa GFP 

hypha loaded with FM4-64 and grown on agar. The yellow line indicates the line along which 

the intensity profile (inset) was recorded. The abscissa correlates to the line starting at the top 

end, which lies outside the hypha. Following the profile, the intensity spikes at the location of 

the Spitzenkörper and then decreases rapidly to the constant moderate intensity level of the 

hyphal cytoplasm. Right: Overlay of the maximum intensities of 23 images of a time series 

showing the Spitzenkörper in the apical compartment. Images were recorded at intervals of 

3.15 s. The overlay resulted in a pronounced trajectory of the Spitzenkörper. The intensity 

decrease of the trajectory was caused by photobleaching. 

Figure S6. Time series of the microtubule distribution in a Neuropsora crassa GFP hypha 

growing on plain agar. The images were recorded in intervals of 3:1 s. The white arrows mark 

the ‘voids’ of the microtubule distributions near the apical cell wall correlating with the 

position of the Spitzenkörper (identified in simultaneously recorded bright field images). 

Scale bar: 5 μm  
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Figure S7. 3D representation of the average intensity values due to microtubules in the 

marked box in the overlay image in Figure S4. Both representations show that the microtubule 

distribution across the cross section of the hypha is inhomogeneous characterised by an 

accumulation of filaments close to the hyphal cell wall. 

 

The following histograms present the spatial distributions of the microtubule relative to the 

hyphal polarisation axis, in the apical and sub-apical compartments; and in agar and 

microfluidic environments. 

Figure S8. Statistical distributions of microtubules for hyphae growing on/in agar, and on 

PDMS microfluidics, respectively, in the apical, and subapical regions of the hyphae.  
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Table S2. Microtubule orientation on agar and in confined spaces 

Interval 
Agar Microfluidics 

Apical Subapical Apical Subapical 

0° to 10° 53% 21% 20% 12% 

0° to 20° 84% 46% 69% 29% 

0° to 80° 100% 98% 99% 97% 

45° to 90° 1% 18% 16% 26% 

This statistical analysis of the orientation of the microtubules shows that, aside from minor 

shifts of alignment versus the hyphal axis in closed/non-constraining environments compared 

with hyphae on agar (from ~5° to 12° in the apical compartment; and from 10° to 20° for 

subapical compartment), the distribution of microtubules has a clear propensity towards 

hyphal walls in both experimental conditions.  

 

Figure S9. Microtubules passing through a septum placed centrally in the hypha (average 

over 200 images). The graph in the inset represents the profile of the intensity values along 

the indicated yellow line. 
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1.1.6. Intracellular mechanisms of branching for external and internal controls 

Figure S10. Top: Branching at 45° in Neurospora crassa GFP on agar. Bottom: Time series 

of the microtubule distribution at an established branching point in a Neuropsora crassa GFP 

hypha growing on agar. The white arrows mark the position of a microtubule moving from 

the parent hypha into the daughter hypha. Scale bar: 5 μm. 

 

Figure S11. Formation of a lateral branch in non-constraining PDMS structures. Overlay of 

the fluorescence signal of the microtubules and Spitzenkörper during a branching event. The 

red arrows indicate the Spitzenkörper and the green arrows indicate the microtubules 

terminating at the point of hyphal formation (26s) and that extend from the parent into the 

forming branch (40s - 90s). The hyphal diameter is 4.9 μm. 
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Figure S12. Branching event in a Neurospora crassa hypha on agar. Left: Overlay of the 

maximum intensities of 68 images of Spitzenkörper movement during branching (images 

were recorded at 5.76s intervals). Spitzenkörper trajectory in the daughter hypha is less clear 

than that for the parental hyphae due to its movement out of the focal plane, e.g., penetrating 

agar. Right: Distribution of the Spitzenkörper ellipsoid axis ratios in the parent and the 

daughter branch. The average ratios are 0.50 and 0.62. 

 

Figure S13. Branching events in FM4-64 loaded Neurospora crassa GFP hyphae in wide 

PDMS channels. Left: Overlay of the maximum intensities of 100 images of a time series 

depicting the Spitzenkörper motilities during the formation of a branch in a wide PDMS 

channel. The images were recorded at intervals of 3.9 s. Right: Distribution of the 

Spitzenkörper ellipsoid axes in the parent and the daughter branch. The average ratios of the 

short and the long axes are 0.57 for the parent hypha and 0.51 for the daughter hyphae.  
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1.2. Collision with obstacles at acute angles of approach 

Figure S14. Spitzenkörper 

trajectories during 

adaptation and the 

‘nestling’ processes. The 

solid line in both images 

indicates the impeding 

PDMS wall. The solid 

arrow in the top panel 

indicates the point where 

the Spitzenkörper trajectory 

starts to deviate from the 

hyphal polarisation axis 

and the dashed arrow 

indicates the point where 

the trajectory aligns 

parallel to the geometry. 

Top: Overlay of the 

maximum intensities of 67 

images of a time series 

depicting the adaption of a 

hyphal apex to the 

geometry. The images were 

recorded at intervals of 4.3 

s. The gradual decrease in 

intensity was caused by 

photobleaching. Bottom: 

Overlay of the maximum 

intensities of 144 images of 

a time series depicting continuous hyphal ‘nestling’ to the confining wall. The images were 

recorded at intervals of 7:4 s. The Spitzenkörper trajectory is permanently dislocated from the 

central axis of the hypha towards the geometry. 

 

Figure S15. Microtubules in Neurospora crassa GFP during ‘nestling’. The numbers indicate 

the elapsed time in seconds. The arrows indicate the direction of the leading microtubules in 

the apical region. The overlaid arrows in the inset at 407 s represent the change in the 

direction of the microtubules over the four depicted frames. The reduction in overall intensity 

was due to photo bleaching effects during the long-term observation. 
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Figure S16. Spitzenkörper motility during ‘nestling’. Overlay of the maximum intensities of 

166 images of a time series depicting a successful corner turn. The images were recorded at 

intervals of 25.4 s. The Spitzenkörper remained located close to the confining geometry in the 

direction closest to the directional memory. 

 

Figure S17. Spitzenkörper trajectory. Left: Overlay of the maximum intensities of 76 images 

of Spitzenkörper trajectory during the re-adaption to the initial growth direction after 

deviation by an obstacle (90 corner, white line). The images were recorded at 5.9 s intervals. 

Right: Time course of the Spitzenkörper volume and the ratio of the ellipsoid axes (b/a) from 

550 s to 1200 s in the time series on the left. The grey highlighted area indicates the transition 

phase from attachment and adaptation to the geometry to the re-adaption of the initial growth 

direction. The solid black line indicates the time of detachment from the rounded corner. 
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Figure S18. Several instances of the manifestation of directional memory. Top: Both parental 

(lower side of the image) and the daughter hypha (higher side of the image) preserve their 

initial direction when the geometry (straight narrow channels) allows it. Bottom: Initial 

direction of growth is preserved for approximately 800 µm during passage through four 

diamond and four plaza structures. 
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1.3. Frontal collision with obstacles 

Figure S19. Parameters of the apical split indicated in selected images of a time series of a 

Neurospora crassa GFP hypha colliding head-on with a PDMS wall. The numbers in the 

bottom left corner indicate the number of the frame in the image series. Left: Frame 34 of an 

apical split image series. The hypha approaches the PDMS wall on the left head-on. Middle: 

Frame 67 of an apical split image series. This frame marks the beginning of the collision 

incident because the hypha is the closest to the wall without any distortions in the apical cell 

wall. The hyphal diameter is measured in the beginning frame for all collision events. The two 

distances measured parallel to the wall at the apex indicate the difference of the cell wall 

position in this beginning and the end frame. Right: Frame 128 of an apical split image series. 

This frame marks the end of the collision incident because this is the last frame in which the 

hyphal extension is characterised by uniform bulging. In the succeeding frames, the extension 

is characterised by the directed extension of the two initiated daughter branches away from 

the collision point. The two distances measured parallel to the wall at the apex indicate the 

difference of the cell wall position in this end and the beginning frame of the image series. 

 

Figure S20. Microtubules in Neurospora crassa GFP during ‘hit & split’. The white vertical 

line indicates the PDMS wall the hypha collided with. At 0 s, the microtubules extended up to 

the cell wall of the apical dome and were aligned mostly parallel to the growth axis. The 

second image was recorded 19 s after the collision, which represents the maximum retraction 

of microtubules of 6.6 μm from the collision point, indicated by the arrow. The frame at 101 s 

represents the snapshot with the maximum extension of the bulges, which marks the transition 

to polarised growth of the forming daughter hyphae. The microtubules resumed extension to 

the apical dome. The frame at 270 s represents an example of the established microtubule 

distributions in the daughter hyphae.  

  

a b c d 

a b c 
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Figure S21. Motility of microtubules and Spitzenkörper during apical hit & split. Four frames 

of a time series taken during an apical split showing the overlay of the GFP and FM4-64 

signals. The selected frames depict the times of collision, maximum distance of the receding 

microtubules, Spitzenkörper disintegration and establishment of daughter polarisation axes. 

The white arrows indicate the Spitzenkörper in the individual frames and the green arrow 

indicates the maximum distance the microtubules receded to. Unfortunately, the GFP signal 

underwent significant photobleaching and differentiation of features decreased. 

Figure S22. Spitzenkörper trajectories during an apical ‘hit & split’ in Neurospora crassa. 

Overlay of the maximum intensities of 135 images of a time series depicting the 

Spitzenkörper motility during collision-induced apical splitting process. The images were 

recorded at intervals of 4 s. The solid arrows indicate the trajectories of the parent 

Spitzenkörper and the dashed arrows indicate the trajectories of the daughter Spitzenkörper. 

  

a b 

c d 
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Figure S23. 

Apical split 

caused by a 

head-on 

collision of a 

hypha with a 

PDMS wall 

dividing 

individual 

channels. The 

solid arrows 

indicate the 

parent 

Spitzenkörper 

and the dashed 

arrows indicate 

the daughter 

Spitzenkörper. 

Figure S24. Top: Microtubules in Neurospora crassa GFP passing a string of lateral 

obstacles. Average calculated from 63 images recorded at 11:6 s intervals. Bottom: final 

snapshot. The microtubule distribution is asymmetric with peaks along the shortest path. 

 

 

 

 

 

 

 

 

Figure S25. Detail of the distribution of 

microtubules distribution and intensity 

drop in the apical compartment of 

Neurospora crassa GFP when a hypha 

collided with an obstacle at near-

orthogonal angle, but able to circumvent 

it, similarly with the above Fig. S24. The 

contact with the obstacle is indicated by 

the white arrow. 
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1.4. Growth and branching in tightly constraining geometries 

Figure S26. Spitzenkörper mobility and location during branching into channel openings and 

after bottlenecks. Single focal plane image of a hypha branching after exiting a 5 μm wide 

channel. The location of the confining PDMS walls is indicated by white outlines. 

 

Figure S27. Microtubule distribution (green) and Spitzenkörper (red) locations during 

‘nestling’ in tightly-constraining channels. The hyphae entered the channel from the “North”, 

thus pressing on the “South” edge of the channels. The red arrows indicate the Spitzenkörper 

in both frames. The green arrows indicate the foremost microtubules in the apical dome. 
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Figure S28. Microtubules in Neurospora crassa GFP during the penetration of a 2μm wide 

channel. The yellow lines indicate the hyphal widths and the green lines indicate the channel 

width. The arrows indicate specific locations and accumulations of microtubules. 
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Figure S29. Spitzenkörper mobility and location during branching into channel openings and 

after bottlenecks. Overlay of the maximum intensities of 121 images of a time series depicting 

a hypha passing a bottleneck and branching into a channel opening, which was accompanied 

by the de novo formation of a daughter Spitzenkörper. The images were recorded at intervals 

of 12.6 s. The parent Spitzenkörper was frequently located close to the confining geometry in 

the direction closest to the directional memory. The discontinuity appeared to be caused by its 

motility in the z-direction, which caused it to repeatedly move out of the focal plane. The 

bright field image represents the hyphal morphology in the last frame of the image series. 

Figure S30. Microtubules in Neurospora crassa GFP during branching in a channel with 

lateral opening. The first and last images represent the simultaneously recorded bright field 

images of the first and last fluorescence image. The first frame demonstrates the lack of 

microtubules in the forming bulge. In the following frames, the microtubules penetrated 

further into the forming daughter branch. Frames a1 and a2, and f1 and f2 represent the same 

instances. 

  

a2 a1 b c 

d e f1 f2 
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Figure S31. Microtubules in 

Neurospora crassa GFP in 

meandering channels. The 

image was created as an 

average of 51 images in a 

series recorded at intervals of 

15.8 s. The arrows indicate the 

microtubules that principally 

aligned along the shortest 

paths through the hyphae. The 

yellow arrows indicate a 

triangle formed by 

microtubules in the hyphal 

cross section. 

 

 

 

Figure S32. Neurospora crassa microtubules through the diamond structure. The average was 

taken of 21 time-lapse images. The insets represent the intensity profiles taken at the position 

of the solid white line (top inset) and at the dashed line (bottom inset). 
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Figure S33. FM4-64 distribution in hyphal trunks confined in channels. Left: Hyphal septum 

stained with FM4-64 in a hypha confined in a 9 μm wide channel (indicated by white lines). 

Distribution of the FM4-64 signal in an undulated hyphal trunk in a diamond structure. The 

white arrow indicates a septum. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S34. Levels of confinement 

for fungal growth in PDMS 

microfluidics structures. (a) 

virtually no mechanical 

confinement: hyphae with a 

diameter of 5-7 µm grow in the 10 

µm gap between the glass coverslip 

and the PDMS ‘ceiling’), similar to 

agar; (b) parallel 1D confinement: 

hyphae progress along a wall in the 

observation plane; (c) 2D 

confinement: hyphae grow while 

being stretched between two walls 

that are perpendicular to the 

observation plane, (d) orthogonal 

or angled 1D confinement: hyphae 

encounter a wall at near-normal 

incidence. 
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1.5.  Methods 

1.5.1. Microfabrication and experimental setup 

The microfluidic network is illustrated in Fig. 1 and see SI Appendix, Fig. S1. Its dimensions, 

i.e., height of 10 µm, and channel widths ranging from 2 to 100 µm were designed to present 

various level of containment to fungal growth, from tight-constraining in channels with 

widths smaller than the hyphal diameter, i.e., 5-7 µm, to confined, but non-constraining 

chambers, with dimensions of 100 x 100 x 10 µm. The artificial environments were fabricated 

using a two-component polymer, poly(dimethyldisiloxane) (PDMS, Sylgard 184, Dow 

Corning) using a well-established procedure.(7) Benefits of using PDMS include low 

fabrication costs, non-toxicity, good biocompatibility, chemical inertness, and optical 

transparency for wavelengths as low as 280 nm.(8-12) Briefly, the fabrication involved the 

moulding of a degassed PDMS mixture of the pre-polymer and curing agent (10:1, w/w) onto 

a microstructured silicon wafer, at 65°C for a duration in excess of 8 hours. After 

hydrophilization via exposure to UV/ozone, the PDMS stamps were irreversibly fixed onto a 

microscope cover slip. Lateral openings in the structure allowed the introduction of the 

growth medium, fungal hyphae, and fluorescent dyes. Fungal inoculation was achieved by 

placing an agar plug, extracted from a zone with young hyphae, e.g., the peripheral growth 

zone of a colony, upside down next to a lateral channel opening. The device was then attached 

to a microscope slide marked with spacers for accurate positioning on a microscope stage. 

Hyphal confinement within channels ensured that the hyphae remained within the working 

distance of the microscope objective, while enabling sufficient gas exchange over long 

periods of time, thus avoiding the need for perfusion with oxygenated nutrient broth, as 

required in agar.(13, 14)  

The microfluidics network design allowed the investigation of fungal behavior in the 

following scenarios (see SI Appendix Fig. S33, from top to bottom): (a) virtually no 

mechanical confinement, wherein hyphae with a diameter of 5-7 µm grow in the 10 µm gap 

between the glass coverslip and the PDMS ‘ceiling’), similar to agar; (b) parallel 1D 

confinement, wherein hyphae progress along a wall in the observation plane; (c) 2D 

confinement, wherein hyphae grow while being constrained between two walls that are 

perpendicular to the observation plane; and (d) orthogonal or angled 1D confinement, 

wherein hyphae encounter a wall at near-normal incidence. In many instances, the hyphae 

encounter the wall at a more acute angle (e.g., 45° or less, relative to the surface), which 

results in a parallel 1D confinement. Additionally, in the case of 2D confinement, the 

channels can be given various widths and shapes (e.g., straight, zig-zagged, or bent at various 

angles).  

 

1.5.2. Fungal species, growth media, staining 
The Neurospora crassa rid (RIP4) mat a his-3+::Pccg-1-Bml+sgfp+ mutant strain 

(henceforth “Neurospora crassa GFP”; FGSC #9519) was obtained from the Fungal Genetics 

Stock Center (School of Biological Sciences, University of Missouri, Kansas City, MO, 

USA). The Neurospora crassa GFP mutant was constructed(15) to express intrinsically GFP-

labelled microtubules while maintaining a growth pattern similar to that of the wild type. The 

strain was cultured on 1% w/v malt extract agar (Merck), which was also used for medium 

filling the microfluidics structures. The high level of nutrients ensures the cancelling of the 

possible chemotaxis-driven directionality of growth. Prior to each experiment, the fungal 

strains were sub-cultured on fresh malt extract agar plates and incubated at 21°C ± 2°C. 

The FM4-64 dye (Invitrogen Ltd. (Paisley, UK) was used as a marker for Spitzenkörper(16). 

A 20-μl droplet of an 8 μM FM4-64 solution was applied onto a microscope coverslip before 

placing an agar slab, excised from the margin of the growing colony, upside-down onto the 

droplet. To avoid an overlay of the dynamics of the dye loading and of the Spitzenkörper, 

imaging was performed at least one hour after loading the hyphae with the dye. 
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1.5.3. Time-lapse microscopy and image analysis 

Live-cell imaging of hyphal growth was performed with an inverted laser-scanning 

microscope (Zeiss Axio Observer Z1 with LSM 5 Exciter RGB, Carl Zeiss, Göttingen, 

Germany) with photomultiplier detectors. Samples were excited with 488 nm and 543 nm 

lasers, and the emitted light was passed through a bandpass filter (505-530 nm) and a 650 nm 

long-pass filter. To reduce photobleaching and phototoxic effects, the laser intensity and laser 

scanning time were kept to a minimum (0.7 - 2.4 % laser energy, 0.75- to 23-second frame 

scans). Fluorescence and bright-field time-lapse images were captured simultaneously and 

analyzed using image processing software (Zen 2008, Carl Zeiss, Göttingen, Germany). Fiji 

software(17) was used for image overlay and quantitative image analysis. RETRAC 2.10.0.5 

(from Dr. Nick Carter, University of Warwick, UK) was used for frame-by-frame tracking 

and calculating cytoskeletal and hyphal kinetics.  

 

1.5.4. Growth experiments on agar and microfluidics structures 

Control measurements for fungal growth in non-constraining environments were performed 

on 1% w/v malt extract media using somatic hyphae at the edges of the colony. The leading 

hyphae, i.e., wide hyphae showing rapid cytoplasmic flow,(18) rarely entered the microfluidic 

structures and were therefore omitted. For the somatic hyphae, ’subapical compartments’ 

were characterized by an increased nuclear density approximately 60 µm from the extreme 

apex. Hyphal growth rates were measured by tracking the position of the extreme hyphal 

apices in subsequent frames. Fungal growth was recorded for the period needed to observe 

hyphal behavior from the entry in, to the exit from the microfluidics network of interest, 

which require approximately 20 minutes for a straight 100 µm channel. However, due to the 

more convoluted geometries of some microfluidics structures, and the presence of multiple 

hyphae, in many instances the image recording lasted more than one hour. 

To measure the cytoskeletal alignment within hyphae, tangents were fitted manually to 

microtubules, and the respective local hyphal longitudinal (i.e., polarization) axes and 

intersection angles were measured. To measure the rates of microtubule polymerization 

within the apical compartment, and to distinguish this from motility, the positions of 

individual filament ends were tracked frame-by-frame, following a methodology reported 

previously.(19) 

The parameters of the obstacle-induced apical ‘hit & split’ included the time elapsed from the 

impact to the establishment of the daughter hyphae and the maximum size of the formed 

bulges immediately before the re-establishment of polarized growth. The hyphal diameter was 

measured at the time of collision with the obstacle. The maximum bulge size was measured 

by overlaying the frame of collision with the frame in which the growth pattern of the 

daughter bulges changed to polarized extension and determining the difference in the apical 

cell wall location on both sides of the hypha. 

 

1.5.5. Statistical analysis  

Statistica 7.1 (Statsoft Inc., OK, USA) and GraphPad Prism 6.01 (GraphPad Software Inc., 

CA, USA) were used for statistical analysis and correlation tests. Statistical analyses included 

calculating the mean and standard deviation values of parameters measured, i.e., position, 

alignment with the hyphal axis, polymerization rate for microtubules, times before 

reappearance of the Spitzenkörper, and hyphal bulge dimensions, over the total number n data 

points, reported for each instance. Statistical analyses included all accumulated data from at 

least 20 separate experiments (unless otherwise stated). GraphPad prism was used to perform 

a Mann-Whitney test comparing the apical and subapical distributions of the microtubule 

polymerization rates and the microtubule alignments to the polarization axis respectively. 
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2. SUPPLEMENTARY MOVIES 

 

 

Supporting Information Movie 

S1. Unconstrained hyphal growth 

in a wide, 100x100x10 µm PDMS-

made chamber. The microtubules 

were genetically GFP-tagged 

(pseudo-coloured green), and the 

hypha was loaded with the marker 

dye FM4-64 (pseudo-coloured red) 

labelling the Spitzenkörper as a 

bright red object within the 

extreme hyphal apex. The video 

shows that the Spitzenkörper 

maintains a central position with 

temporary side-ways deviations 

resulting in small changes in the 

growth direction. Frame rate = 

12.6 s per frame. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supporting Information Movie 

S2: The same hypha as in S1, with 

tracking of the Spitzenkörper 

trajectory. 

  



25 
 

Supplementary Information Movie S3. Hyphal growth on an open agar surface, displaying 

the microtubules (green, left) and vesicle traffic (phase-contrast image, right). 

 

Supporting Information Movie S4: Microtubule distribution along a hypha growing in an 

unconfined environment. 
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Supplementary Information Movie S5. Microtubule dynamics when passing a septum. Left: 

fluorescence imaging. Right: bright field imaging. 

 

Supporting Information Movie S6: Microtubule dynamics during lateral branching on agar. 
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Supporting Information Movie S7. Directional memory, illustrated with a Neurospora 

crassa hypha loaded with the marker dye FM4-64 (pseudo-coloured red). The hypha initially 

encounters a wall at a steep angle and temporarily redirects its growth direction according to 

the constraining geometry. During the ‘nestling’ phase, the Spitzenkörper shifts from the apex 

centre toward the wall, and the apex shape becomes skewed also toward the wall. Upon 

reaching the corner, the hypha immediately recovers its initial growth direction. Frame rate = 

17.9 s per frame; total real-time sequence duration = 20 min 44 s. 
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Supplementary Information Movie S8. Encounter of a hypha with a PDMS wall, followed 

by splitting into two daughter hyphae. After formation the two twin hyphae return to their 

parent directional memory and penetrate the soft PDMS wall. 

Supplementary Information Movie S9. Encounter of a hypha with a soft PDMS wall, 

followed by penetration. The Spitzenkörper disappears as the hypha tip exerts pressure on the 

PDMS wall, similarly with initial stages of the ‘hit and split’ process (Movie S8). 
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Supplementary Information Movie S10.  Microtubule dynamics in a Neurospora crassa 

hypha growing through a string of lateral obstacles. Left: fluorescently labelled microtubules. 

Middle: differential contrast imaging of the hyphal growth. Right: overlap of the fluorescent 

and bright field images.  

Supplementary Information Movie S11. Encounter of a hypha with a corner (microtubules 

labelled green). The directional memory opposes a change in growth direction; instead, an 

orthogonal branch emerges near the apex of the parent hypha. 
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Supplementary Information Movie S12. Hyphae tightly-constrained in narrow channels. 

The absence of lateral openings precludes lateral branching, but branching resumes 

immediately upon leaving the channel. 

Supplementary Information Movie S13. Lateral branching of a Neurospora crassa hypha at 

a channel intersection, imaged with the fluorescent marker dye FM4-64 (left, pseudo-coloured 

red) and by bright-field imaging. The growth of the parent hypha is temporarily deflected by 

the vertical wall, but it subsequently realigns in a direction similar to that before the initial 

wall encounter (top left corner of the images). During this growth, the expanding subapical 

hyphal diameter eventually exceeds the channel width at the first intersection. The cell wall 

bulges, and the formation of a daughter Spitzenkörper precedes the establishment of an 

independent lateral daughter branch. The effect of directional memory is apparent in the 

movement of the primary hypha. Frame rate = 17.6 s per frame; total real-time duration 14 

min 23 s.   
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Supplementary Information Movie S14. Directional memory, displayed in the conservation 

of hyphal microtubule orientations throughout a 150-µm path.  

 

Supplementary Information Movie S15. The same sequence of events as in Movie S9 

showing the microtubules only (green, left), a phase-contrast image (middle), and an overlay 

of the two imaging modes (right). 


